
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.10, No 4, Oct- Dec2020

1

The SOFTmon Network for Software-Defined Networks
K.Chaitanya 1, Ch.Ambedkar 2,

Assistant Professor 1,2,

Department of CSE, SRK INSTITUTE OF TECHNOLOGY ENIKEPADU

VIJAYAWADA

Mail Id : Vishnu kilaru.chaitanya84@gmail.com, Mail id : rahul59985@gmail.com,

ABSTRACT

The foundational enabler for network

virtualization is the software-defined networking

(SDN) substrate. They provide many opportunities

but need novel approaches to addressing

established, long-standing problems. Accordingly,

in this research, we provide a novel network

monitoring tool that is compatible with the

standard, commercially-available Open Flow

controllers. The provided instrument offers usage

charts and data up to a flow level, hence extending

the controller monitoring capabilities. The tools'

architecture and implementation will be presented

with the feature set.

1. Introduction

The monitoring of computer networks has been an

essential part of performance management ever

since their inception. To assess the state of a

network, it is required to isolate critical status

parameters. Monitoring a network entails keeping

close tabs on a number of metrics, such as the

percentage of available bandwidth and the delay

between individual nodes. In addition, node-based

characteristics, like as connection failures and

packet losses, are critical in determining whether or

not the network is operating normally. Avoiding

congestion and finding architectural bottlenecks are

both made easier with network monitoring. Physical

problems, such as severed cables or down

computing and network nodes, may also be detected

and fixed rapidly. These instances highlight why

network monitoring is crucial. The complexity and

size of modern networks need constant monitoring.

In particular, it is crucial to have a cutting-edge

monitoring solution due to the increasing

complexity of data centers and networks generally.

Moreover, virtualization based on CC and the SDN

paradigm is constantly redefining the difficulties of

network monitoring. Consequently, we'd like to

provide SOFTmon, our free and open-source SDN

monitoring application. With the help of this utility,

you may get an advanced monitoring solution that

works with any Network Operating System (NOS).

As a result, it enhances the capabilities of traditional

NOS-based monitoring by adding graphical

transmission charts that provide a wide range of

usage data at the switch, port, and flow levels. For

example, it enables the possibility of differentiating

between many IP-related flows and their burden in

the context of the entire network's use and

capabilities. This Section of the paper is organized

as follows. Some Context is provided and relevant

work is described in Section 2. Section 3 describes

the structure of the tool, while Section 4 details a

prototype implementation. Section 5 provides an

assessment, while Section 7 provides a quick

summary. Second, context and related studies In

general, monitoring is a subject that should not be

taken lightly. Multiple mechanisms are often used to

keep an eye on a network. Internet Control Message

Protocol (ICMP) host-based latency measures and

Simple Network Management Protocol (SNMP)

network-node-based inquiries are two such

examples. These applications, however, need

decentralized configuration and testing. As a result,

a centralized monitoring server component is

essential, such as Zabbix1 or Nagios2. This

monitoring server compiles, analyzes, and displays

data on a regular basis. Technologies like the Open

Flow protocol give and support direct access to the

network nodes and other statistics, allowing for the

use of these methods in SDN networks as well.

Therefore, an SDN-based monitoring system would

be more robust and would provide a great deal of

additional opportunities to capture network

information, such as various flow statistics that can

be directly accessed from the flow tables of the

switches. Moreover, Open Flow managed switches

typically report any network status changes like e.g.

a failed link status, instantly to the NOS. They also

exchange frequent keep alive messages with the

NOS in order to determine the network status as a

whole. On the other hand, the NOS are frequently

using a mechanism similar to the Link Layer

Discovery Protocol (LLDP) to obtain the current

network topology and the regarding interconnects.

Furthermore, the NOS can be triggered to query the

network nodes via the Open Flow protocol in order

to obtain the flow tables, flow entries, as well as their

counters and statistics. This particular mechanism is

utilized by SOFTmon to provide a very fine granular

flow-based monitoring solution. There are several

open source Open Flow based SDN NOS available.

OpenDaylight3 and Floodlight4 for instance, are

very common at the moment. As previously

mentioned, they generally support basic monitoring

mailto:kilaru.chaitanya84@gmail.com
mailto:doddapanenivenkat@gmail.com

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.10, No 4, Oct- Dec2020

2

capabilities like the visualization of network

topology or the flow statistics in a tabular

representation. Nevertheless, the presentation of this

information can be evolved, since it is not really

human readable neither it provides an appropriate

understanding of the current network utilization.

Thus, several papers try to address this issue with

proposals and approaches for SDN based network

monitoring5, 6, and 7. However, almost all of them

mainly deal with different measurement approaches

and procedures in order to increase the measurement

accuracy concerning time. On the other hand, some

papers8, 9 present controller module extensions,

which are bound to particular NOS and interact

directly with the packet forwarding process. Others

again, describe just some early work prototypes10,

which are not available for testing or downloading.

In contrast, the presented SOFTmon tool presented

in this paper introduces a method of flow monitoring

using the northbound NOS interface. The tool is

completely decoupled from other network or

software components and acts as an additional utility

to observe the network utilization. Furthermore, the

prototype implementation including the Floodlight

connector is available on GitHub11.

Architecture

SOFTmon's fundamental concept is to provide a

NOS-independent traffic monitoring application

that delivers supplementary monitoring features and

a clear presentation of those features. As a result,

SOFTmon employs a technique for traffic

measurement that depends only on the switch, port,

and flow data established by the Open Flow standard

and available through query by any standard NOS.

As shown in Figure 1(a) and explained in12,

SOFTmon is a business application that operates at

the network application layer of the SDN paradigm.

It does this by way of the platform's own application

programming interface (API), which communicates

with the northbound NOS interface.

Figure 1: Buildings SOFTmon follows the pattern of

layered software architecture in its own conceptual

design. Database, file I/O, and representational state

transfer (REST) capabilities are all part of the data

access layer, the foundation of the stack. This layer

provides the fundamental capabilities necessary for

interaction with the NOS. Northbound API13 that

conforms to the REST paradigm is provided by the

vast majority of open source NOS implementations,

making it possible for network applications to be

written in any language. As a result, this interface

was chosen to serve as a bridge between SOFTmon

and the NOS. Since there is now no common NOS

northbound API, REST seems to be the most

convenient technique to integrate new NOS

connections with different network controllers. In

order to describe the methods and data model that

must be offered by a certain communication module

for the related NOS implementation, SOFTmon's

design includes an abstraction layer called REST

connector. The data model is part of the next higher

level. The NOS statistics are used by the data model

to calculate the performance metrics. Once again,

the NOS got these details from the network nodes

through Open Flow. However, there are primarily

three parts to the data model. Let's start with the

topology. It consists of all the switches in a network

and the wiring between them. It also has the counters

that are keeping track of the statistics. Metrics are

the last component. In order to see how well a

network is doing, they are essential. Open Flow v1.3

provides the foundation for the object model used to

describe the network's topology and counter objects.

The specific REST client of the data access layer is

responsible for providing the functionality

necessary to convert the data model retrieved from

the NOS non-standardized REST API into the

SOFTmons data model. The graphical user interface

(GUI) for data visualization and user interaction is

located in the uppermost layer. There are tabs where

you can choose how you want to measure things,

buttons to initiate and terminate the visualization,

and a chart component to display the performance

metrics in near real time. The SOFTmon team has

relied on a simulated testing environment built with

the Mininet15 network emulator and the Floodlight4

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.10, No 4, Oct- Dec2020

3

SDN controller. This development setup consists of

two VMs running Ubuntu 14.04 Linux as guests in

VMware Workstation, which is installed on a

computer running Windows 7 Professional as the

host operating system. Mininet simulator is installed

on the first virtual machine. Figure 1(b) depicts the

tree topology used to organize Mininet, which has a

depth of two and a fan-out of three. This method was

used often during development to achieve consistent

NOS return results. While development took place

on a Windows host system using Java and the

Eclipse IDE, the NOS itself was encased in a second

virtual machine (VM).

4. Implementation

The complete software system may be developed

incrementally and modularly thanks to the design

outlined in section 3. SOFTmon's monitoring

capabilities are, however, limited by the data

available via the NOS's Restful interface. It is

important to develop the related REST client in

order to incorporate a certain NOS. The prototype of

SOFTmon is compatible with Floodlight. While the

uniform resource identities (URIs) for each every

Floodlight REST call16 are described in full, the

data model for the JSON structure that is returned is

not. As a result, it was necessary to use reverse

engineering and probes in order to ascertain the data

model. The REST client implementation may end up

being the most difficult and time-consuming aspect

of future NOS support. The quality of the

documentation for the NOS REST API is crucial to

this.

 Table 1. Indicators and underlying measurements

The Open Flow v1.3 port and flow data are used in

the computation of the performance metrics. The

computed metrics and their corresponding counters

are shown in Table 4. While the NOS are responsible

for aggregating data, the values represented by the

switch counters are not. Time-dependent

performance metrics m (t) may be derived from their

associated time-dependent counters c (t):

Counter values are available only in time-discrete

form. Thus, the calculation of a metric can be

approximated by using the corresponding time

interval _t:

The Open Flow specification defines duration

counters for port statistics, as well as flow statistics

(since Open Flow version 1.3), which could be used

as a time base for the time-dependent counter values.

This would help to achieve measurements with a

theoretical accuracy up to one nanosecond.

However, the counter for the nanosecond portion of

the duration is marked as optional in the Open Flow

specification. Thus, the maximum feasible and

guaranteed time resolution is one second. In

addition, the port duration counters do not exist in

earlier Open Flow versions.

Unfortunately, one second is not sufficient to

achieve a fluent visualization in soft real time. The

solution for this issue is to create an additional time

base by generating and adding a system time stamp

to the counter values based on the arrival time of the

corresponding JSON object received from the NOS.

This is also necessary for adding the functionality of

presenting historical values. The resulting error of

the time stamp approach will be analyzed in detail in

section V.

Fig. 2. SOFTmon GUI Figure 2 presents an

overview of SOFTmon’s graphical user interface on

a Windows 7 OS. The parameters and credentials for

the REST connection and the regarding NOS can be

configured in the upper left area. To the right is

another area where the refreshing time and the

amount of values for the visualization can be

adjusted. The tree view on the left allows choosing

different points of measurement dependent on the

selected tab. The tree view also reflects the network

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.10, No 4, Oct- Dec2020

4

topology, while the tabs allow switching the

presentation according to the ports per switch, the

flows per switch or the switch interconnects. Further

details of the selected sample are displayed on the

lower left side, whereas the sample is presented as a

chart on the right side. The Open Flow based

statistics values are monitored in soft real time. In

order to measure the network utilization caused by a

particular flow, some effort has to be spent in

filtering the flow tables of a certain switch and

locating the statistic entries of interest. The

Floodlight REST interface only allows querying the

complete list of all flows in all flow tables of a

certain switch at once. This list is arranged by the

table ID and the processing sequence of each table

regarding the switch’s matching process. The

current Softmax prototype only supports flow

monitoring for the network layer. This means in

order to become a selectable item in the SOFtmon

GUI, a flow needs to have valid entries in the fields

IPv4 source and destination address as well as

Ethernet source and destination address. Further, the

instruction field must contain a valid action.

However, flows are installed and deleted

dynamically by the Floodlight’s Learning Switch

module. Thus, flow list obtained by the NOS and its

flow statistics can differ in length and sequence from

one measurement cycle to the subsequent one.

Therefore, the flow that is selected for monitoring

has to be identified in the list through an internal

matching process in which the following fields are

compared: flow table ID, IPv4 source and

destination address, Ethernet source and destination

address, Ethernet type, IP protocol, transport

protocol source and destination port and physical

input port. Not mandatory

 Values (e.g. transport protocol ports) are substituted

by a wildcard for the search process. In order to not

disrupt a flow’s utilization visualization metrics

when it has been deleted, the statistic values of a

missing flow are marked as invalid. This causes the

calculation module to return zero as a value.

Therefore the graph of the measured metric drops

also to zero, but is continued to be drawn until the

selected flow is probably active again. The GUI

elements that can be selected for monitoring are:

switches, switch ports, and flows. They are

presented in a tree structure corresponding to the

network’s topology. Since flows can be installed and

deleted within short time frames, this tree structure

for selecting the measurement has to be updated

manually by the user. The visual presentation of a

metric is implemented with the JChart2D library17.

It is intended especially for engineering tasks and

therefore optimized for the dynamic and precise

visualization of data with a minimal configuration

overhead. The user can configure the duration of a

measurement cycle dM, as well as the amount of

values displayed in a graph NM via the GUI.

5. Evaluation

 In order to determine the error that emerges from

the proposed and implemented system time stamp

approach to label the probes, as described in section

IV, the deviation of a switch port metric m (_its) is

measured. This metric is calculated for a time

interval _its based on the time stamps for the metric

m (_tC), which again is calculated for the time

interval _tC of the time counters. As shown in table

2, the experimental evaluated and calculated relative

deviation of the time interval increases slightly with

a decreasing duration of the measurement cycle dM.

In contrast, the mean deviation of the calculated

metric is constantly lower than 0,005 percent.

Table 2. Empirical identified error with time stamp

approach

The mean REST call execution time dR of the test

system results in comparatively constant values

between ap-proximately five and seven milliseconds

with regard to the measurement cycle dM. However,

there is an offset dO from the instant of time tS based

on time stamps to the instant of time Tc based on

time counters. This offset has an averages time of

around 25 milliseconds. That means, the metrics that

are obtained from the NOS are visualized and

displayed around 25 milliseconds later than they

actually occur. This is negligible for the

applicability as network monitoring tool. In a

nutshell, the obtained results demonstrate that even

commodity hardware is able to deliver a sufficient

sample rate and resolution for the usage of

SOFTmon. In addition to the Mininet based

development environment presented in section III,

SOFTmon was also intensively evaluated on a local

SDN research cluster. This cluster is named Asok

and has a typical SDN enabled data center fat tree

network topology. The SDN network is composed

out of dedicated Open Flow switches from NEC.

Table 3 lists all components and their hardware and

software specifications as used for the cluster based

evaluation.

Table 3. Asok Cluster Hardware Configuration

In order to evaluate the monitoring performance

with SOFTmon, network traffic was generated using

the iperf tool18. Figure 3(a) depicts the evaluation

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.10, No 4, Oct- Dec2020

5

deployment as well as the iperf server and client

configuration. The NOS

Fig. 3. Evaluation on a SDN cluster and the

SOFTmon application are running on dedicated

nodes, which are not directly part of the cluster.

They are not connected to the SDN data network,

but to the separated management network via 1Gbps

Ethernet. This network is used for the NOS to switch

communication and vice versa. Figure 3(b) shows

port traffic probes that were collected with

SOFTmon on the cluster. It shows the throughput as

byte and packet rate. This particular example was

generated with the iperf setup that previously has

been introduced and described. The iperf clients

were configured to use a to 100Mbit/s limited

transmission rate in order to avoid traffic

congestion. The graph depicted in figure 3(b), shows

the measured and visualized throughput on port 19

of switch nec1-1. This is the incoming (RX) traffic

from client asok04, which reaches an averages of 12,

5 MByte/s. This correlates with the configured 100

Mbit/s transmission rate. Moreover, the graph on the

right shows the outgoing (TX) throughput of port 18

of switch nec3-1 which is the sum of the iperf traffic

of all three clients (asok04 to asok06) that was

started successively. The traffic that was limited to

100 Mbit/s per client reaches an average overall

amount of 37, 5 MByte/s, which again correlates to

the configured 300 Mbit/s transmission rate. For

further evaluation of SOFTmon under real traffic

conditions, the development environment, as

introduced by fig. 1(b), was used for video

streaming experiments. The charts that are presented

in 4 were collected while retrieving a video live

stream with a web browser that was started on a

virtual host in the Mininet environment. The curves

are showing data bursts which are typical for video

streaming.

Fig. 4. Port and flow metrics with Youtube traffic

evaluated on Mininet All charts that are presented in

this paper are screenshots of the current version of

the SOFTmon tool. They reflect samples taken

during the evaluation and validation process.

 6. Disclosure

This work was supported by a fellowship within the

FITweltweit programmed of the German Academic

Exchange Service (DAAD).

7. Conclusion

This new monitoring tool offers a fresh method for

keeping tabs on Open Flow networks. It may be used

to identify any form of network activity and expands

on the topology-based monitoring capabilities

offered by standard NOS. The code for the

implementation may be found on GitHub11. The

current implementation of the Floodlight REST

client might be improved with community

contributions, and the software's design is ready to

accept them. Because it is written in Java, it can run

on any machine. Mininet and Open Flow v1.3 were

used to test and verify the functionality of the

provided application. Additionally, the standard

data center network architecture and Open Flow

version 1.0 were used in the evaluation of an SDN

research cluster. In addition, a live video streaming

was used to test the tool in a realistic network

environment. Thus, SOFTmon has already shown

that the capital S does not indicate a lack of features

or functionality, but rather that it is easy to use. One

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.10, No 4, Oct- Dec2020

6

of the design constraints was that the tool be very

easy to use. A simple, controllable solution like

SOFTmon might be extremely beneficial in

deploying SDN in productive settings by providing

users with a simple, but powerful administrative

application, such as Network Operation Control

(NOC) operators. Another perk is that SOFTmon

may be used independently of the network. The

NOC retains primary control over the network, but

a local admin, for example, may utilize the tool to

investigate a problem.

 References

1. Zabbix :: The enterprise-class monitoring

solution for everyone. 2016. URL:

http://www.zabbix.com.

 2. Nagios – the industry standard in it

infrastructure monitoring. 2016. URL:

https://www.nagios.org.

3. Opendaylight platform. 2016. URL:

https://www.opendaylight.org.

4. Project floodlight. 2016. URL:

http://www.projectfloodlight.org/floodlight/.

5. Baik, S., Lim, Y., Kim, J., Lee, Y.. Adaptive flow

monitoring in sdn architecture. In: Network

Operations and Management Symposium

(APNOMS), 2015 17th Asia-Pacific. 2015, p. 468–

470. doi:10.1109/APNOMS.2015.7275368.

6. Isolani, P.H., Wickboldt, J.A., Both, C.B., Rochol,

J., Granville, L.Z.. Interactive monitoring,

visualization, and configuration of open flow-based

sdn. In: 2015 IFIP/IEEE International Symposium

on Integrated Network Management (IM). 2015, p.

207–215. doi:10.1109/INM.2015.7140294.

7. Pajin, D., Vuleti, P.V.. Of2nf: Flow monitoring in

open flow environment using net flow/infix. In:

Network Softwarization (NetSoft), 2015 1st IEEE

Conference on. 2015, p. 1–5.

doi:10.1109/NETSOFT.2015.7116138.

8. van Adrichem, N.L.M., Doerr, C., Kuipers, F.A...

Opennetmon: Network monitoring in openflow

software-defined networks. In: 2014 IEEE Network

Operations and Management Symposium (NOMS).

2014, p. 1–8. doi:10.1109/NOMS.2014.6838228.

9. Grover, N., Agarwal, N., Kataoka, K.. liteflow:

Lightweight and distributed flow monitoring

platform for sdn. In: Network Softwarization (Net

Soft), 2015 1st IEEE Conference on. 2015, p. 1–9.

doi:10.1109/NETSOFT.2015.7116160.

10. Raumer, D., Schwaighofer, L., Carle, G..

Monsamp: A distributed sdn application for qos

monitoring. In: Computer Science and Information

Systems (FedCSIS), 2014 Federated Conference on.

2014, p. 961–968. doi:10.15439/2014F175.

http://www.zabbix.com/
https://www.nagios.org/
https://www.opendaylight.org/
http://www.projectfloodlight.org/floodlight/

