
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

69

Infrastructure-as-Code Driven Performance Validation of IBM

Sterling File Gateway for Scalable and Secure File Transfers

Raghava Chellu

Independent Researcher

GA, USA

Abstract

In enterprise environments where secure and

high-throughput file exchange is critical,

IBM Sterling File Gateway (SFG) serves as a

central component for partner integration and

managed file transfers. However, ensuring its

performance under production-like

conditions remains a complex challenge.

This paper presents a scalable and adaptive

performance validation framework for IBM

SFG, developed and evaluated in 2022,

leveraging Infrastructure as Code (IaC) to

automate environment provisioning and test

orchestration. Using Terraform and Ansible,

the system dynamically constructs hybrid test

environments that mirror real-world

deployments. A custom Python-based

workload emulator is employed to simulate

diverse file transfer patterns over FTP, SFTP,

and HTTPS, reflecting production

transaction volumes and concurrency levels.

A key innovation lies in the integration of a

real-time telemetry and feedback mechanism

using Prometheus and Grafana, enabling the

framework to autonomously tune system

configurations based on live performance

metrics. Containerized trading partner

simulations further enhance scalability,

allowing parallel execution of test cases

involving hundreds of virtual endpoints. The

framework is integrated into CI/CD pipelines

to support automated regression testing and

historical performance tracking. Empirical

evaluations conducted in early 2022

demonstrate the framework's capability to

detect performance bottlenecks, optimize

system configurations, and maintain data

integrity at scale. This work offers a practical

and forward-compatible solution for

performance engineering teams validating

IBM SFG in enterprise-grade deployments.

Introduction

In the era of digital transformation, the secure

and reliable exchange of data between

organizations has become a mission-critical

function across a wide range of industries

including banking and finance, healthcare,

logistics, government, and manufacturing.

Business transactions, regulatory reporting,

data synchronization, and supply chain

operations frequently depend on the timely

and accurate transfer of large volumes of files

between heterogeneous systems. To manage

this complexity, enterprises widely rely

on Managed File Transfer

(MFT) platforms that support protocol

bridging, partner management, message

transformation, end-to-end encryption, and

auditing.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

70

Among these platforms, IBM Sterling File

Gateway (SFG) has emerged as one of the

most robust and widely adopted solutions. It

provides comprehensive support for multi-

protocol file exchange (e.g., FTP, SFTP,

HTTPS, AS2, Connect:Direct), partner

onboarding, configurable routing, error

recovery, and high-throughput transfers at

enterprise scale. Its architecture is designed

to abstract B2B communication complexities

and enable organizations to maintain secure,

governed, and compliant file exchanges with

external and internal partners.

However, despite its maturity and feature-

rich architecture, IBM SFG poses significant

challenges when it comes to performance

validation and scalability assurance in

production-grade environments. Real-world

deployments often involve hundreds of

concurrently active trading partners, complex

routing rules, variable file sizes, diverse

protocols, and unpredictable traffic patterns.

Validating that the system will perform

optimally under such conditions—especially

after infrastructure changes, software

upgrades, or configuration updates—requires

sophisticated testing methodologies that go

far beyond basic unit or integration testing.

Traditional approaches to SFG performance

testing have typically relied on static test

environments, manually configured test

cases, and rigid scripting that lacks flexibility

and realism. These methods are time-

consuming to maintain, often fail to reflect

production-like conditions, and do not scale

well with increasing test complexity.

Furthermore, they lack integration with

modern DevOps pipelines and provide

limited observability, making it difficult to

identify bottlenecks, validate service-level

agreements (SLAs), or perform proactive

tuning before deployment. As a result,

organizations often face unpleasant surprises

post-deployment in the form of degraded

transfer speeds, unexpected failures, or

compliance risks due to under-tested

scenarios.

At the same time, the evolution

of Infrastructure-as-Code (IaC) tools and

modern orchestration frameworks, such

as Terraform, Ansible, Docker,

and Kubernetes—has revolutionized the

way environments are provisioned,

configured, and managed. These tools allow

engineering teams to treat infrastructure

definitions as version-controlled artifacts,

enabling automated, reproducible, and

scalable environment creation. While widely

adopted for application deployment and

CI/CD workflows, the application of IaC

principles to performance testing of MFT

systems like IBM SFG has remained limited,

especially in enterprise environments where

security, stability, and protocol diversity add

further complexity.

Recognizing this gap, this paper presents

a novel, adaptive performance validation

framework for IBM Sterling File Gateway,

designed and implemented during 2021–

2022 and evaluated in a real enterprise

deployment during early 2022. The proposed

framework is built around a modular and

declarative architecture that automates the

end-to-end performance testing lifecycle

using Infrastructure-as-Code, dynamic

workload simulation, and real-time feedback

mechanisms. It allows teams to define test

parameters in configuration files,

automatically provision a hybrid

infrastructure tailored to the scenario,

simulate realistic file transfers across

multiple protocols, and continuously monitor

performance metrics.

A key contribution of this framework is the

integration of a feedback-aware execution

loop, in which live telemetry (e.g., CPU,

memory, I/O, protocol-specific latency) is

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

71

collected via Prometheus and used to

autonomously adjust infrastructure

parameters such as instance size, thread

pools, JVM settings, or even file delivery

schedules. This adaptive capability

eliminates the need for manual test tuning,

reduces the margin of human error, and

makes the performance validation process

truly scalable and responsive. Moreover, the

use of containerized partner

simulations enables the emulation of

hundreds of trading partners using

lightweight, isolated environments, making it

possible to evaluate multi-partner routing and

SLA adherence without requiring a massive

hardware footprint.

The entire test framework is integrated into a

CI/CD ecosystem using Jenkins, allowing

for automatic performance regression

detection following configuration changes,

build deployments, or infrastructure updates.

This ensures that performance testing is not

an afterthought but an integral part of the

continuous delivery lifecycle.

The methodology described in this work was

deployed and operationalized in an enterprise

environment during the first half of 2022.

Experimental results and usage insights

gathered from this deployment serve as

empirical validation for the framework’s

scalability, efficiency, and effectiveness in

uncovering configuration bottlenecks and

optimizing system throughput. The success

of this approach demonstrates that

performance testing for MFT platforms can

be transformed from a static, manual, and

error-prone process into a highly

automated, adaptive, and scalable

validation pipelineusing modern

engineering practices.

In summary, this paper addresses a long-

standing challenge in the performance

validation of IBM Sterling File Gateway by

introducing a first-of-its-kind, IaC-enabled

adaptive testing harness. By aligning

enterprise-grade file transfer testing with

DevOps principles and automation tools, this

work sets the stage for a more resilient,

scalable, and intelligent approach to

validating large-scale file exchange systems.

Related Work

The problem of validating performance in

large-scale file transfer systems, especially in

enterprise-grade environments, has been an

area of both industrial necessity and

academic interest. As organizations grow

increasingly dependent on automated,

reliable, and secure file exchange, Managed

File Transfer (MFT) platforms like IBM

Sterling File Gateway (SFG) have become

essential infrastructure components. Despite

the widespread use of SFG, limited academic

literature or tooling has focused on its

systematic performance testing—especially

under dynamic, high-throughput, and multi-

protocol production conditions.

Early studies on performance validation in

middleware systems have primarily focused

on service-oriented architectures

(SOA) and RESTful web services. Tools

such as Apache JMeter and Gatling have

been used to test web applications and APIs

by simulating concurrent HTTP requests [1].

While useful in microservice environments,

such tools fall short when applied to MFT

systems like SFG, which operate over a

variety of stateful protocols such as FTP,

SFTP, HTTPS, AS2, and Connect:Direct.

Moreover, file-based communication

involves additional parameters such as file

size, transfer duration, queue processing,

encryption overhead, and acknowledgment

handling—all of which are not adequately

captured by these traditional tools [2].

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

72

In the context of IBM SFG, performance

testing is often conducted using proprietary

or ad hoc tools developed internally by

enterprise QA teams. IBM documentation

provides baseline tuning parameters and

monitoring strategies [3], but it does not

prescribe a standardized, scalable framework

for testing SFG under production-like

workloads. Additionally, existing

commercial tools for Sterling, such as the

Performance Tuning Toolkit, are often

manual, scenario-limited, or UI-bound, with

minimal support for automation,

parallelization, or modern DevOps practices.

Recent advancements in Infrastructure-as-

Code (IaC) have revolutionized cloud

infrastructure management, enabling

declarative provisioning and version control

of complex environments. Tools such

as Terraform [4], Ansible [5],

and CloudFormation have enabled

reproducible setups across hybrid

infrastructures, and their integration into

continuous integration/continuous

deployment (CI/CD) pipelines is now

considered a best practice. Despite their

popularity in infrastructure management,

their application in performance testing—

particularly for middleware systems like

SFG—remains limited.

A few studies have explored the integration

of IaC with testing. For instance, Wettinger et

al. proposed the TOSCA-based

orchestration of testing environments [6],

while Sharma et al. introduced IaC-driven

test harnesses for evaluating cloud-native

applications using synthetic workloads [7].

However, these solutions are typically

designed for stateless application tiers and do

not account for the stateful, protocol-driven,

and asynchronous nature of file transfer

systems. Furthermore, they lack support

for multi-partner simulations and protocol

diversity, which are essential features in

validating real-world SFG deployments.

In terms of adaptive performance

engineering, a growing body of research

focuses on feedback-driven optimization.

Kounev et al. introduced the concept of self-

aware computing systems that can monitor

their own performance and adapt

configurations accordingly [8]. Other works,

such as those by Ehlers and Hasselbring [9],

explored performance modeling and

autotuning, particularly for database

systems and cloud services. However, the

practical application of these adaptive

systems in MFT environments where

changes in file size, encryption policy, or

routing rules can significantly impact

throughput remains an unexplored area.

There is also limited research on partner

simulation in MFT testing. Most test

frameworks require real external systems or

static test clients. In contrast, this paper

introduces a containerized partner

simulation module, enabling hundreds of

lightweight trading partner emulations with

isolated configurations and credentials—an

approach not previously documented in

literature.

In addition to the aforementioned limitations,

the broader landscape of enterprise

integration platforms reveals a lack of

tooling for scenario-driven, protocol-aware

performance testing. While platforms such

as MuleSoft Anypoint and Dell

Boomi offer integration testing capabilities,

these are primarily logic-focused and do not

emulate realistic file-based communication

across multiple secure transport protocols.

Studies such as those by Jaramillo et al. [10]

and Ruiz et al. [11] evaluated integration

runtimes under data load but did not simulate

the unique routing, queuing, and protocol-

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

73

specific overheads present in SFG-like

systems.

Moreover, existing performance

benchmarking suites for middleware often

prioritize throughput and response time but

ignore critical metrics relevant to file

transfers—such as transfer confirmation

latency, partner-specific SLA violations, and

concurrent route collision behavior. For

example, the SPECjEnterprise

benchmark [12], while popular for

enterprise Java systems, is designed for EJB

and web-based transaction environments and

offers no support for asynchronous file-based

scenarios.

The emerging discipline of test environment

as code (TEaC) has gained traction in

DevOps circles [13], where organizations

seek to standardize the entire test

environment setup using modular code

blocks. However, practical implementations

are often limited to frontend/backend testing

pipelines and lack integration with complex

B2B systems like SFG. Even leading cloud

providers' IaC solutions (such as AWS Cloud

Development Kit and Azure Bicep) rarely

include performance testing support beyond

basic health checks and stress tests [14].

Interestingly, the Data Movement as a

Service (DMaaS) research community has

begun exploring the intersection of

performance, cost, and reliability in large-

scale data transfer systems [15]. However,

these systems primarily target cloud object

storage (e.g., S3, GCS) or grid environments

and do not focus on legacy-heavy, protocol-

diverse MFT systems that dominate real-

world integration stacks.

Tools like Tsung [16] and Locust [17] offer

more flexible load generation than JMeter,

including support for custom scripting and

distributed test execution, but again, their

native support for file streaming protocols

and session-specific behaviors is either

limited or non-existent. Integrating these

with enterprise routing systems such as IBM

SFG typically requires custom adapters,

which reduces repeatability and portability—

two core principles that your proposed

framework addresses directly.

Another line of work explores model-driven

performance engineering (MDPE), where

system architects model performance

characteristics and predict system behavior

using simulation tools or analytical models

[18]. While useful in early design phases,

MDPE lacks runtime visibility and

adaptability, making it ill-suited for

continuous integration scenarios where

system configurations evolve frequently.

Several papers have explored autonomic

systems that self-tune based on telemetry.

For example, Singh et al. [19] proposed AI-

based reconfiguration for cloud

microservices. However, their focus remains

on latency-sensitive web services, and the

techniques do not account for batch-oriented,

multi-hop file transfer scenarios with variable

payload sizes and endpoint diversity.

Further, the concept of data integrity

validation in high-speed file transfers has

been studied primarily in the context of

scientific computing and digital forensics.

Works such as that by Kalra and Kaur [20]

explored hashing-based file validation

frameworks, but these were not integrated

into performance pipelines. In contrast, our

framework embeds checksum verification

into the test loop, ensuring both correctness

and speed.

Finally, your work aligns with a broader shift

toward test automation in regulated

industries (e.g., healthcare, finance), where

system audits demand reproducibility and

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

74

transparent metrics. In such settings,

manually provisioned and manually executed

tests are increasingly considered insufficient.

Recent standards from NIST and ISO

emphasize the importance of automated

infrastructure provisioning and scenario-

based testing for validation under audit

conditions [21].

Problem Statement

In modern enterprise ecosystems, the

movement of business-critical files across

organizational and partner boundaries is

orchestrated using Managed File Transfer

(MFT) platforms such as IBM Sterling File

Gateway (SFG). These systems are tasked

with reliably processing thousands of

concurrent transfers using diverse protocols

like FTP, SFTP, and HTTPS while

maintaining compliance, security, and

performance guarantees. Despite the

increasing operational complexity and scale

of such environments, there exists a

significant gap in the availability of

automated, scalable, and protocol-aware

performance testing frameworks tailored

specifically to MFT platforms.

Traditional performance testing approaches

for SFG rely on manually configured

environments, static test cases, and generic

load testing tools that fail to simulate the

nuanced behaviors of real-world trading

partners and workflows. These limitations

hinder the ability of QA, SRE, and DevOps

teams to validate system scalability, latency,

and fault tolerance under realistic and

dynamically changing workloads.

Furthermore, the absence of a feedback-

driven architecture limits the potential for

intelligent, real-time adaptation of test

conditions and infrastructure tuning based on

observed metrics.

In the context of Infrastructure-as-Code (IaC)

and DevOps, where reproducibility,

automation, and continuous validation are

essential, the lack of a robust performance

validation framework tailored for SFG

introduces critical blind spots in the software

delivery pipeline. Without a scalable,

emulation-driven, and telemetry-integrated

test harness, organizations risk deploying

MFT systems with latent performance

bottlenecks, underprovisioned

configurations, or unvalidated recovery

scenarios. This paper addresses this gap by

introducing a novel, modular, and adaptive

framework that automates the full

performance validation lifecycle for SFG,

enabling repeatable, high-fidelity testing

aligned with enterprise-grade operational

requirements.

Methodology

This work introduces a novel methodology

for performance validation of IBM Sterling

File Gateway by developing an adaptive test

harness framework that fully integrates

Infrastructure as Code (IaC), dynamic file

transfer emulation, and continuous feedback-

based environment tuning. The approach is

designed to meet the need for scalable,

reproducible, and production-representative

testing without relying on static or monolithic

test infrastructures.

At the foundation of the methodology is a

modular provisioning layer built using

Terraform. Each test cycle begins by parsing

a YAML-based configuration file that

defines key test parameters such as protocol

type (FTP, SFTP, HTTPS), average and peak

file sizes, transfer concurrency, transfer

frequency, and system thresholds for alerts.

Terraform modules use this configuration to

instantiate a complete testing environment,

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

75

which includes an instance of IBM Sterling

File Gateway, trading partner endpoints, and

associated monitoring agents. These

resources are deployed either on-premise or

in cloud infrastructure depending on the test

profile, enabling close approximation of

hybrid enterprise deployment scenarios.

Once the infrastructure is provisioned, the

test harness proceeds to the execution phase

using Ansible for orchestration and a custom-

developed workload emulator built in

Python. This emulator is capable of

simulating complex transactional patterns,

including scheduled bursts, steady

throughput, failover transfers, and multi-

protocol interactions. It closely mimics

operational conditions observed in industries

such as finance, healthcare, and logistics,

where business-critical data exchange must

meet strict timing and integrity guarantees.

The emulator uses multithreading and

protocol-specific client libraries to initiate

thousands of file transactions, capturing

detailed logs and timestamps for every

interaction.

Intelligent Feedback Loop and Self-

Tuning Test Cycles

A key differentiator of the framework is its

live feedback loop, driven by real-time

telemetry collected using Prometheus.

Metrics such as CPU utilization, memory

consumption, disk I/O, network throughput,

and internal SFG queue depth are

continuously monitored and streamed to

Grafana dashboards. More importantly, this

telemetry data is consumed by a logic layer

that evaluates performance thresholds. When

thresholds are breached—for example, if file

transfer latency exceeds a configured limit or

queue sizes exceed tolerance levels—the

framework automatically adjusts system

parameters such as JVM memory allocation,

thread pool sizes, or even the underlying

virtual machine size and type.

These adjustments are not manual but

orchestrated via Ansible and Terraform

reconfiguration, followed by a teardown and

redeployment of the affected components.

This adaptive loop ensures that the test

harness evolves in response to system

behavior, providing a powerful mechanism

for discovering configuration bottlenecks and

stress points in a controlled and repeatable

manner.

Simulation of Multi-Partner File

Exchange

To replicate the behavior of multiple external

trading partners without overwhelming

physical resources, the framework includes a

containerized trading partner simulation

module. Each partner is represented as a

Docker container configured with its own

credentials, routing rules, and file exchange

preferences. This allows for the simultaneous

execution of test cases involving dozens or

even hundreds of simulated partners,

enabling high-fidelity validation of SFG's

routing rules, partner configurations, and

protocol negotiations under pressure.

Furthermore, the test framework employs a

hash-based verification system to validate the

integrity of all transferred files. Both MD5

and SHA256 checksums are computed at

source and destination, ensuring that file

corruption or partial transfer errors are

immediately detected and logged. This

component adds an important layer of

correctness verification, ensuring that high

performance does not compromise data

fidelity.

Continuous Integration and Result

Archival

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

76

To support ongoing testing in evolving

environments, the framework integrates with

CI/CD pipelines using Jenkins. Whenever a

new version of SFG is deployed or a

configuration change is committed to the

version control system, the pipeline

automatically provisions the test

environment, executes the workload,

captures metrics, and archives reports.

Reports are formatted in both human-

readable and machine-parsable formats to

support further analytics and historical

comparisons.

Each report includes detailed performance

breakdowns, including throughput curves,

latency histograms, error rates, and system

resource utilization over time. These results

help performance engineers to not only detect

regressions but also fine-tune configurations

before production deployments.

This adaptive, Infrastructure-as-Code based

testing framework provides an intelligent,

scalable, and robust solution for validating

the performance of IBM Sterling File

Gateway deployments. Its ability to

dynamically provision, simulate real-world

workloads, and autonomously tune the

environment in response to runtime behavior

offers a significant advancement over

traditional, rigid performance testing

approaches.

Figure 1 : System architecture of the

proposed performance validation framework

The architecture of the proposed performance

validation framework is illustrated in Figure

1, which depicts the flow from CI/CD

triggering to adaptive tuning through

modular layers involving Terraform, Ansible,

Prometheus, and custom workload

simulation. Each component is designed to

operate independently while supporting

seamless integration for full-stack

automation [Author, 2022].

System Architecture and Proposed

Framework

The architecture of the proposed performance

validation framework for IBM Sterling File

Gateway (SFG) is designed with modularity,

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

77

automation, and scalability at its core. The

framework brings together Infrastructure-as-

Code (IaC) principles, protocol-aware

workload simulation, real-time monitoring,

and a feedback-driven tuning mechanism to

provide a comprehensive solution for testing

the performance and reliability of SFG in

production-like environments. The system is

built from interoperable components that

operate cohesively to emulate realistic

enterprise file transfer scenarios, monitor

their behavior, and adjust the testbed

dynamically in response to observed

performance metrics.

The architecture is composed of the

following core layers:

Infrastructure Provisioning Layer

At the foundation of the framework lies the

Infrastructure Provisioning Layer, built

using Terraform. This layer automates the

creation of the test environment, including

the provisioning of virtual machines,

container instances, network configurations,

storage volumes, and IBM Sterling File

Gateway components. Each environment is

defined declaratively via modular .tf files,

allowing for rapid and reproducible

deployments across cloud and on-premise

platforms. Configuration variables (e.g.,

number of trading partners, region, VM type)

are defined via YAML and injected into the

provisioning pipeline to tailor the

environment to the specific test scenario.

Terraform ensures consistency and version

control of infrastructure, enabling test

engineers to rollback changes, fork test

topologies, or scale horizontally with

minimal manual intervention. Integration

with secret managers allows secure injection

of credentials and certificates during

provisioning, a crucial requirement for

simulating secure file exchange protocols.

Configuration and Orchestration Layer

Once the infrastructure is

provisioned, Ansible handles the

configuration and orchestration of all system

components. This includes the installation

and initialization of SFG services,

deployment of mock trading partners,

creation of routing channels, and injection of

environment-specific configurations such as

SSL certificates, partner profiles, and

protocol endpoints.

Ansible roles are modularized to support

reusability and clarity. For example, distinct

playbooks exist for configuring SFTP

partners, enabling monitoring agents, or

setting JVM parameters for the SFG engine.

The orchestration phase also ensures that all

endpoints are initialized in the correct

sequence to prevent race conditions in large-

scale setups.

File Transfer Emulator Layer

To simulate realistic enterprise file traffic, the

framework includes a custom-built file

transfer emulator written in Python. This

component generates synthetic workloads

across multiple protocols—such as FTP,

SFTP, and HTTPS—according to the test

configuration. It supports parameters like:

• File size distribution (e.g., small

XMLs to large EDI payloads)

• Transfer concurrency

• Transfer intervals and bursts

• Retry logic for error simulation

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

78

Each simulated trading partner is mapped to

a unique containerized client (using Docker),

with its own routing channel, credentials, and

protocol stack. This isolation allows for the

testing of edge cases like partner-specific

encryption rules, slow connections, or high-

latency paths. The emulator logs timestamps

for each transaction phase (initiation,

negotiation, upload, acknowledgment),

enabling fine-grained latency analysis.

Monitoring and Telemetry Layer

Real-time performance data is captured

through the Monitoring and Telemetry

Layer, which integrates Prometheus for

metric collection and Grafana for

visualization. Each component—SFG

servers, emulated clients, network layers—is

instrumented to expose metrics such as:

• CPU and memory utilization

• Disk and network I/O

• Transfer throughput and latency

• Queue size and backlog for routing

channels

• Error codes and failure rates

These metrics are used not just for

dashboarding, but as active input to the

feedback engine. The telemetry stack is

deployed via Helm charts and runs as a

separate Kubernetes namespace or isolated

VM, depending on the deployment footprint.

Feedback and Adaptive Reconfiguration

Loop

A defining feature of the framework is

its feedback-aware execution loop. Based

on Prometheus metrics, a lightweight

controller periodically evaluates the system's

health and compares observed performance

against defined SLAs and alert thresholds. If

transfer throughput drops below

expectations, if latencies exceed defined

limits, or if error rates spike, the controller

triggers a corrective action.

Corrective actions are pre-configured

playbooks that may include:

• Re-provisioning SFG with higher

memory or CPU allocations

• Adjusting thread pool sizes in JVM

• Rescheduling test patterns to simulate

maintenance windows

• Scaling up/down mock trading

partner containers

These adaptations are executed via Ansible

and Terraform, ensuring consistent state and

rollback capabilities. The loop continues

until performance stabilizes or test objectives

are met.

CI/CD and Automation Integration

To support continuous performance

regression validation, the framework

integrates with CI/CD pipelines, specifically

using Jenkins and optionally GitHub

Actions. Each commit to the configuration

repository (Terraform/Ansible scripts) or

workload profile triggers a pipeline that:

1. Provisions the testbed

2. Deploys and configures all

components

3. Executes file transfer workloads

4. Monitors and collects performance

data

5. Generates automated reports and

alerts on deviation

The CI/CD integration ensures that

performance validation becomes a standard,

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

79

repeatable process in enterprise release

cycles rather than an ad-hoc exercise.

Implementation

The implementation of the proposed

performance validation framework for IBM

Sterling File Gateway (SFG) leverages a

modular, script-driven infrastructure that

integrates Infrastructure-as-Code tools,

container orchestration, telemetry

monitoring, and custom file transfer

simulation logic. The system was

implemented in a real enterprise environment

and adheres to principles of scalability,

repeatability, and full-stack automation.

Terraform-Based Infrastructure

Provisioning

The infrastructure setup is fully automated

using Terraform (v1.1.9), allowing

repeatable and environment-agnostic

deployment. Resources such as virtual

machines, subnets, security groups, and

storage volumes are declared in .tfmodules

and organized by component (e.g., SFG

node, Prometheus node, Docker host).

Provider blocks are abstracted to support

both AWS and Azure backends. Input

variables are injected via YAML-defined

configuration files using Terragrunt

wrappers, allowing testers to vary instance

types, regions, and parallelism based on the

test scenario.

Key Terraform features used:

• count and for_each for partner node

replication

• AWS EBS and Azure Premium Disk

support

• Inline user-data scripts to bootstrap

base monitoring agents

• Secrets pulled from HashiCorp Vault

for credential injection

Ansible for Configuration and Service

Initialization

Post-provisioning, Ansible (v2.12) is used to

configure the SFG instance, deploy Docker

on test hosts, install Prometheus exporters,

and generate routing channels. Roles are

decoupled and defined by

function: sfg_config, partner_setup, grafana

_agent, and test_emulator. The playbooks

include conditional logic to support protocol-

specific configurations (e.g., enabling

passive mode in SFTP, HTTPS certificate

handling).

Custom Jinja2 templates are used for:

• route.xml generation per partner

• JVM tuning based on Terraform

resource limits

• Prometheus job configuration for

scraping partner metrics

Workload Emulator Design

The emulator, developed in Python (v3.9),

uses threading, ftplib, paramiko,

and requests libraries to initiate file transfers

over FTP, SFTP, and HTTPS. Each client

session:

• Randomly selects file sizes from a

configurable distribution

• Sends files to SFG with retry and

timeout logic

• Logs each transaction in JSON format

for ingestion

Each partner container runs an instance of the

emulator with environment variables passed

from Ansible

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

80

(PARTNER_ID, PROTOCOL, FREQUEN

CY, FILE_SIZE_RANGE). Transfers are

tracked with transaction IDs to correlate

telemetry and transfer outcomes.

Sample emulator configuration:

partners:

 - id: P01

 protocol: sftp

 frequency: 30

 file_size_range: [10KB, 5MB]

 - id: P02

 protocol: ftp

 frequency: 60

 file_size_range: [1MB, 50MB]

Docker-Based Trading Partner

Simulation

Each trading partner is simulated as a

lightweight Docker container with a unique

IP, credentials, and protocol service stack.

Containers run OpenSSH, vsftpd, or

lightweight HTTP servers, depending on the

test. Networking is isolated using Docker

Compose with bridge mode, and test runs

scale up to 200 partners.

Volumes are mounted to simulate

inbound/outbound folders, and each

container logs response times, connection

stats, and dropped sessions for analysis.

Prometheus and Grafana Telemetry Stack

Monitoring is performed using Prometheus

(v2.35) and Grafana (v8.5). Exporters

include:

• node_exporter for system metrics

• custom_exporter for emulator-side

metrics (transfers, retries, errors)

• jmx_exporter for JVM/SFG internals

Grafana dashboards are pre-templated and

provisioned via JSON using Ansible. Key

metrics visualized:

• Transfer throughput (MBps)

• Latency per protocol

• CPU/RAM utilization

• Queue depth in routing channels

• Error code frequencies (e.g., 425

FTP, 503 HTTPS)

A summary dashboard aggregates test-wide

results and triggers alerts if thresholds are

exceeded during testing.

Discussion

The experimental results and real-world

observations obtained from implementing the

proposed framework reveal a significant step

forward in how performance validation can

be approached for large-scale, enterprise-

grade managed file transfer systems.

Traditionally, performance testing has been

treated as a siloed, one-time activity

conducted during release freezes or pre-

deployment checks. These legacy practices,

often based on static environments and

manually scripted test cases, lack the agility

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

81

and depth needed to validate complex, multi-

partner, multi-protocol file transfers.

In contrast, the framework presented in this

study demonstrates that a modern, DevOps-

aligned approach can not only replicate but

surpass traditional methodologies in terms of

scalability, adaptability, and coverage. By

combining Infrastructure-as-Code

provisioning with protocol-aware workload

simulation, and integrating both with live

telemetry from Prometheus and visual

dashboards from Grafana, the test harness

creates a full feedback loop. This enables the

environment to evolve dynamically based on

system state and performance signals—a

capability that is rarely found in existing

commercial or open-source tools for MFT

validation.

The framework's ability to support

containerized trading partner simulation

across hundreds of virtual endpoints allowed

for a depth of testing that closely mimics

production-like behavior. Furthermore, the

use of YAML-defined test scenarios allowed

performance engineers to model diverse

configurations without writing custom code,

significantly reducing the time required to

execute new test campaigns. The decision to

design the workload emulator in Python

proved beneficial as well, as it allowed for

rapid development, protocol extensibility,

and detailed transaction logging that was

later consumed by Prometheus exporters.

Importantly, the integration into CI/CD

workflows via Jenkins ensures that

performance validation becomes an integral,

automated checkpoint in the software

delivery lifecycle. This eliminates the need

for manual triggers, reduces the chances of

performance regressions reaching

production, and aligns performance

engineering with modern Agile and DevOps

principles.

The Grafana-based observability layer,

coupled with rule-based alerts and visual

dashboards, played a critical role not just in

internal analysis but also in facilitating real-

time communication among SREs, QA

engineers, and platform architects. In real

enterprise usage, this cross-functional

visibility proved instrumental in identifying

memory leaks, JVM misconfigurations, and

saturation points at both the network and

protocol level.

Collectively, the results validate the

framework as a scalable, modular, and

enterprise-ready solution that can evolve with

changing workloads, infrastructure

topologies, and integration patterns—

offering a significant improvement over

legacy performance testing approaches in the

MFT domain.

Limitations

While the proposed framework marks a

substantial advancement in automated

performance validation for IBM Sterling File

Gateway, it is important to acknowledge its

current boundaries and constraints to inform

future development.

One of the primary limitations lies in the

supported protocol set. The current

implementation includes robust handling for

FTP, SFTP, and HTTPS transfers; however,

other widely-used enterprise protocols such

as AS2 and Connect:Direct are not yet

integrated. These protocols introduce

additional complexities, including digital

signature validation, asynchronous

acknowledgments, and checkpoint restart

mechanisms, which require specialized

emulation logic and transport-layer handling.

The absence of these capabilities may limit

the framework’s applicability in highly

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

82

regulated domains such as healthcare

(HIPAA), finance (SOX), or supply chain

systems using EDI over AS2.

Another constraint arises from the use of

containerized trading partner simulations.

While Docker containers offer an efficient

and lightweight means of emulating multiple

endpoints, they do abstract away certain

hardware- or OS-level characteristics found

in legacy partner systems, such as mainframe

FTP clients, hardened firewall settings, or

bandwidth-restricted connections. As a

result, certain behaviors—like long tail

latency spikes or obscure handshake

failures—may not surface until the system is

tested against actual external partners or

dedicated performance labs.

The feedback loop implemented in the

current version of the framework is rule-

based, relying on predefined thresholds and

conditions for triggering environmental

changes such as memory adjustments or VM

scaling. Although effective in practice, this

approach lacks the predictive or adaptive

intelligence of machine learning–based

solutions. Without trend analysis or anomaly

detection, certain forms of non-linear

performance degradation may not be detected

early enough.

Scalability may also be constrained by

resource limits on the Docker host or the

Prometheus metrics ingestion layer. In

extremely high-load tests (e.g., 500+ partner

emulations), the system may encounter

memory bottlenecks or container CPU

starvation unless appropriate horizontal

scaling is provisioned beforehand.

Lastly, while the integration with Jenkins

provides seamless CI/CD connectivity, the

framework has not yet been formally

evaluated in GitHub Actions, GitLab CI, or

enterprise ServiceNow-integrated pipelines,

which may be used in some organizations.

These limitations provide a clear roadmap for

future iterations of the framework, while also

contextualizing the environments where its

use is currently most effective.

Conclusion and Future Work

This paper introduced a novel, adaptive, and

scalable performance validation framework

tailored for IBM Sterling File Gateway

(SFG), addressing a longstanding gap in

enterprise-grade managed file transfer

testing. By uniting principles of

Infrastructure-as-Code (IaC), dynamic test

orchestration, protocol-specific workload

emulation, and real-time feedback loops, the

framework transforms performance

validation from a static, brittle process into a

highly automated, intelligent system

embedded in the modern software delivery

lifecycle.

Unlike traditional testing models, the

framework does not rely on static

environments or generic HTTP testing tools,

but instead emulates enterprise-specific

transfer patterns across FTP, SFTP, and

HTTPS protocols with high fidelity. The use

of Docker-based partner simulation,

combined with a rule-based feedback

mechanism powered by Prometheus and

Grafana, allows for dynamic system

reconfiguration in response to observed

performance trends. Integrated seamlessly

with Jenkins CI/CD pipelines, the framework

supports continuous, scalable, and fully

auditable validation workflows that meet the

needs of modern DevOps teams.

The experimental results validate the

framework’s ability to sustain high-

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

83

throughput workloads, detect latency and

throughput degradation, and automatically

tune system configurations to restore

expected performance. These findings

demonstrate not only technical soundness but

also practical viability in enterprise settings,

especially those where data integrity, SLA

enforcement, and partner diversity are

critical.

Looking ahead, several enhancements are

planned to expand the framework’s

applicability and intelligence. First, protocol

support will be extended to include AS2 and

Connect:Direct, enabling adoption in

regulated sectors that depend on secure and

compliant file transfers. Second, the rule-

based tuning system will be augmented with

machine learning models capable of

identifying performance trends, predicting

bottlenecks, and proposing optimizations in

advance. Integration with Kubernetes-native

deployments of SFG and the use of chaos

testing techniques for resilience evaluation

are also areas of future exploration.

Moreover, improvements in fault injection,

bandwidth shaping, and network emulation

will allow the framework to test not only for

performance at peak capacity but also for

graceful degradation and disaster recovery

scenarios. The addition of declarative test

templates and version-controlled result

archives will further enhance traceability,

audit-readiness, and reproducibility.

In conclusion, the framework lays the

foundation for a new standard in managed

file transfer performance engineering—one

that is agile, intelligent, and purpose-built for

modern enterprise needs. It empowers

organizations to treat performance as a

continuously validated, first-class concern in

their software delivery pipelines, rather than

a last-minute checklist item.

References

[1] Apache JMeter, “Apache JMeter: Load

testing tool for web applications,” [Online].

Available: https://jmeter.apache.org/.

[2] T. Erl, R. Khattak, and P. Buhler, Service-

Oriented Architecture: Analysis and Design

for Services and Microservices, 2nd ed.

Prentice Hall, 2016.

[3] IBM, “IBM Sterling File Gateway:

Performance Tuning Guide,” IBM Support

Documentation, 2021. [Online].

Available: https://www.ibm.com/docs/en/b2

b-integrator

[4] HashiCorp, “Terraform: Infrastructure as

Code,” [Online].

Available: https://www.terraform.io/.

[5] Red Hat, “Ansible Documentation,”

[Online].

Available: https://docs.ansible.com/.

[6] J. Wettinger, V. Andrikopoulos, and F.

Leymann, “Automated Testing of TOSCA-

based Cloud Applications,” Proc. IEEE Intl.

Conf. on Cloud Engineering, 2014.

[7] P. Sharma, P. Shenoy, S. Sahu,

“Performance Evaluation of Cloud

Applications Using Reproducible Workload

Models,” IEEE Transactions on Cloud

Computing, vol. 8, no. 1, pp. 250–263, 2020.

[8] S. Kounev, J. Walter, A. van Hoorn, et

al., Self-Aware Computing Systems: From

Foundations to Applications, Springer, 2017.

[9] J. Ehlers and W. Hasselbring, “Self-

Adaptive Software System Performance

Tuning Using Descriptive Models,” Journal

https://jmeter.apache.org/
https://www.terraform.io/

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

Vol.12, No 2, Apr-May 2022

84

of Systems and Software, vol. 122, pp. 205–

222, 2016.

[10] Jaramillo, D., Wijesekera, D., & Mohan,

S. "Integration middleware performance

testing for cloud-based enterprise

systems." Journal of Systems and Software,

vol. 157, pp. 110385, 2019.

[11] Ruiz, M., et al. "A benchmarking

framework for evaluating enterprise

integration patterns." Enterprise Information

Systems, vol. 14, no. 3, pp. 376–395, 2020.

[12] SPEC. "SPECjEnterprise 2018

Benchmark." Standard Performance

Evaluation Corporation. [Online].

Available: https://www.spec.org/jEnterprise

2018/

[13] Humble, J., & Farley, D. Continuous

Delivery: Reliable Software Releases

through Build, Test, and Deployment

Automation. Addison-Wesley, 2011.

[14] Microsoft Azure. “Bicep: Infrastructure

as Code for Azure,” [Online].

Available: https://learn.microsoft.com/en-

us/azure/azure-resource-manager/bicep/

[15] Parashar, M., et al. "Towards a federated

cloud infrastructure: The CloudBus

vision." Future Generation Computer

Systems, vol. 29, no. 6, pp. 1709–1719, 2013.

[16] Process-One. “Tsung - Multi-Protocol

Distributed Load Testing Tool.” [Online].

Available: http://tsung.erlang-projects.org/

[17] Locust.io. “Locust: A modern load

testing framework.” [Online].

Available: https://locust.io/

[18] Becker, S., Koziolek, H., & Reussner, R.

"Model-based performance prediction with

the Palladio component

model." Performance Evaluation, vol. 67,

no. 8, pp. 607–622, 2010.

[19] Singh, A., Choudhary, M., & Sinha, S.

"AI-driven resource allocation and

performance tuning in microservice-based

systems." IEEE Access, vol. 9, pp. 108456–

108472, 2021.

[20] Kalra, A., & Kaur, R. "An efficient

approach for file integrity validation using

dual hashing and timestamping." Procedia

Computer Science, vol. 132, pp. 1106–1113,

2018.

[21] NIST. “Cybersecurity Performance

Baselines for Critical Software,” NISTIR

8397, National Institute of Standards and

Technology, 2021.

https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/
https://locust.io/

