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Abstract—Bat Algorithm is a recently-developed 

method in the field of computational intelligence. In 

this paper is presented an improved version of a Bat 

Meta-heuristic Algorithm, (IBACH), for solving 

integer programming problems. The proposed 

algorithm uses chaotic behaviour to generate a 

candidate solution in behaviors similar to acoustic 

monophony. Numerical results show that the IBACH 

is able to obtain the optimal results in comparison to 

traditional methods (branch and bound), particle 

swarm optimization algorithm (PSO), standard Bat 

algorithm and other harmony search algorithms. 

However, the benefits of this proposed algorithm is in 

its ability to obtain the optimal solution within less 

computation, which save time in comparison with the 

branch and bound algorithm (exact solution method). 
 

Index Terms—Bat algorithm; meta-heuristics; 

optimization; chaos; integer programming. 

 
 

INTRODUCTION 

The real world optimization problems are often very 

challenging to solve, and many applications have to deal 

with NP-hard problems [1]. To solve such problems, 

optimization tools have to be used even though there is no 

guarantee that the optimal solution can be obtained. In 

fact, for NP problems, there are no efficient algorithms at 

all. As a result of this, many problems have to be solved 

by trial and errors using various optimization techniques 

[2]. In addition, new algorithms have been developed to 

see if they can cope with these challenging optimization 

problems. Among these new algorithms, many algorithms 

such as particle swarm optimization, cuckoo search and 

firefly algorithm, have gained popularity due to their high 

efficiency. In this paper we have used IBACH algorithm 

for solving integer programming problems. Integer 

programming is NP-hard problems [3-10].The name 

―linear integer programming ―is referred‖ to the class 

of combinatorial constrained optimization problems with 

integer variables, where the objective function is a linear 

function and the constraints are linear inequalities.‖ The 

Linear Integer Programming (also known as LIP) 

optimization problem can be stated in the following 

general form: 

 

Max cx

 

(1) 

s.t. Ax ≤  b,

 

(2) 

xZn

 

(3) 

 

where the solution x∈ Zn is a vector of n integer 

variables: x = (x1, x2 , …, xn)
T
 and the data are rational 

and are given by the m×n matrix A, the 1×n matrix c, and 

the m×1 matrix b. This formulation includes also equality 

constraints, because each equality constraint can be 

represented by means of two inequality constraints like 

those included in eq. (2). 

Integer programming addresses the problem raised by 

non-integer solutions in situations where integer values 

are required. Indeed, some applications do allow a 

continuous solution. For instance, if the objective is to 

find the amount of money to be invested or the length of 

cables to be used, other problems preclude it: the solution 

must be discrete [3]. Another example, if we are 

considering the production of jet aircraft and x1 = 8.2 jet 

airliners, rounding off could affect the profit or the cost 

by millions of dollars. In this case we need to solve the 

problem so that an optimal integer solution is guaranteed. 

The possibility to obtain integer values is offered by 

integer programming: as a pure

 integer linear programming, in which all the 

variables must assume an integer value, or as a mixed-

integer linear programming which allows some variables 

to be continuous, or a 0-1 integer model, all the decision 

variables have integer 

values of zero or one[10]. 

A wide variety of real life problems in logistics, 

economics, social sciences and politics can be formulated 

as linear integer optimization problems. The 

combinatorial problems, like the knapsack-capital 

budgeting problem, warehouse location problem, 

travelling salesman problem, decreasing costs and 

machinery selection problem, network and graph 

problems, such as maximum flow problems, set covering 

problems, matching problems, weighted matching 

problems, spanning trees problems and many scheduling 

problems can also be solved as linear integer optimization 

problems [11-14]. 

Exact integer programming techniques such as cutting 

plane techniques [15-17]. The branch and the bound both 

have high computational cost, in large-scale problems 

[18-19]. The branch and the bound algorithms have many 
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advantages over the algorithms that only use cutting 

planes. One example of these advantages is that the 

algorithms can be removed early as long as at least one 

integral solution has been found and an attainable 

solution can be returned although it is not necessarily 

optimal. Moreover, the solutions of the LP relaxations 

can be used to provide a worst-case estimate of how far 

from optimality the returned solution is. Finally, the 

branch method and the bound method can be used to 

return multiple optimal solutions. 

Since integer linear programming is NP-complete, for 

that reason many problems are intractable. So instead of 

the integer linear programming, the heuristic methods 

must be used. For example, Swarm intelligence 

metaheuristics, amongst which an ant colony 

optimization, artificial bee colony optimization particle 

swarm     optimization     [20-24].     Also     Evolutionary 

algorithms, differential evolution and tabu search were 

reflection and use it for navigation. They typically emit 

short and loud sound impulses and the pulse rate is 

usually defined as 10 to 20 times per second. After hitting 

and reflecting, bats transform their own pulses to useful 

information to gauge how far away the prey is. Bats use 

wavelengths, that vary from range (0.7, 17) mm or 

inbound frequencies (20,500) kHz. By implementation, 

pulse frequency and pulse rates have to be defined. Pulse 

rate can be simply determined from range 0 to 1, where 0 

meaning there is no emission and 1 meaning bats are 

emitting maximum (5-8). This behaviour can be used to 

formulate the new bat algorithm. Yang [28] used three 

generalized rules for Bat Algorithm: 
 

All bats use echolocation to sense distance, and they also 

predict the difference between food/prey and background 

barriers in some magical way. 

Bats fly randomly with velocity vi at position xi with 

a fixed frequency fmin, varying wavelength  and 

loudness A0 to search for prey. They can automatically 

adjust the wavelength (or frequency) of their emitted 

pulses and adjust the rate of pulse emission r [0, 1], 

depending on the proximity of their target. 

III. Although the loudness can vary in many ways, we 

assume that the loudness varies from a large (positive) A0 

to a minimum constant value Amin. Initialization of the 

bat population is performed randomly. Generating the 

new solutions is performed by moving virtual bats 

according the following equations: 

 

2. Section 3 introduces the meaning of chaos. In section 

4, the proposed algorithm is described, while the results 

are discussed in section 5. Finally, conclusions are 

presented in section 6. 

 
THE ORIGINAL BAT ALGORITHM 

x 
t
 = x 

t-1
 + v 

t
 , (6) 

 

where β ∈ [0, 1] is a random vector drawn from a uniform 

distribution. Here X is the current global best solution 

which is located after comparing all the solutions among 

all the bats. 

For the local search part, once a solution is selected 

among the current solutions, a new solution for each bat 

is generated located using random walk [29-33]. 

 

xnew = xold +  At (7) 

where  is the scaling factor and A 
t
 is the loudness, the 

loudness A0 and the rate ri of pulse emission have to be 

updated accordingly as the iterations proceed. These 

equations are: 
 

. 
 

The basic steps of BA can be summarized as the 

pseudocode shown in Figure 1. 

 
 

Bat Algorithm 

Begin 

Objective function f (x), x = (x1, ...,xd)
T 

Initialize the bat population xi and vi for (i = 1,2, ...,n ) Define pulse 

frequency fi at xi 

Initialize pulse rates ri and the loudness Ai 
While(t <Max number of iterations) 
Generate new solutions by adjusting frequency and, Updating 

velocities and locations/solutions (equations 4 to 6) if(rand (0,1)> ri 

) 

Select a solution among the best solutions Generate a 

local solution around the best solution 

End if 

The Sine map 

The Sine map is written as the following equation: 

 

Yn+1 = µ sin(𝜋Yn) Yϵ (0,1) 0 < µ ≤ 4
 (

11) 

 
2 . Iterative chaotic map 

The iterative chaotic map with infinite collapses is 

described as: 

Generate a new solution by flying randomly 
if(rand (0,1)< Ai &f(xi) < f(x) ) Accept the new 

solutions Increase ri and reduce Ai 

End if 

Rank the bats and find the current best 

. Circle map 

Yn+1 

= sin (µ ) µ ∈ (0,1) (12) 
Yn 

End while 

Post process results and visualization 
The Circle map is expressed as: 

   End  Y = Y + 𝘢 − (  ) sin(2𝜋Y ) mod 1 
Fig. 1 Pseudo code of the bat algorithm 

CHAOS THEORY 

Generating random sequences with longer periods 

and good consistency is very important for easily 

simulating 

3 . Chebyshev map 

The family of Chebyshev map is written as the 

following equation: 

complex phenomena, sampling, numerical analysis, 

decision making and especially in heuristic 

optimization [34]. Its quality determines the 

reduction of storage and 

http://en.wikipedia.org/wiki/NP-complete
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n n n 

Yn+1 = { (20) 

K 

Yn+1 = cos(kcos−1(Yn)) Y ∈ (−1,1) (14) 

computation time to achieve a desired accuracy [35]. 

Chaos is a deterministic, random-like process found in 

a nonlinear, dynamical system, which is non-period, 

non- converging and non-bounded. Moreover, it 

depends on its 

4 . Sinusoidal map 

This map can be represented by 

 
Y = µY2sin(𝜋Y ) (15) 

initial condition and parameters [36-38]. Applications 

of chaos has several disciplines including operations 

research, physics, engineering, economics, biology, 

philosophy and computer science [39-41]. 

 
7. Gauss map 
n+1 k n 

Recently chaos has been extended to various 

optimization areas because it can more easily escape 

from 
local   minima   and   improve   global   convergence   
in 

The Gauss map is represented by: 
 

0 Yn = 0 

comparison with other stochastic optimization 

algorithms [37-42]. Using chaotic sequences in Bat 

Algorithm can be helpful to improve the reliability of 

the global optimality, and they also enhance the 

quality of the 

Yn+1 = { µ 

Yn 

 

8. Sinus map 

mod 1 Yn G 0 (16)
 

results. 

A. Chaotic maps 

At random-based optimization algorithms, the 

methods using chaotic variables instead of random 

variables are called chaotic optimization algorithms 

(COA) [37]. In these algorithms, due to the non-

repetition and ergodicity of chaos, it can carry out 

overall searches at higher speeds than stochastic 

searches that depend on probabilities [43- 52]. To 

resolve this issue, herein one-dimensional and non-

invertible maps (are mathematical systems that model 

a single variable as it evolves over discrete steps in 

time) are utilized to generate chaotic sets. We will 

illustrate some of well-known one-dimensional maps 

as: 

1 . Logistic map 

The Logistic map is defined by: 

Yn+1 = µ Yn(1 − Yn) Y(0,1) 0 <  ≤ 4
 (

10) 

Sinus map is formulated as follows: 

 

Yn+1 = 2.3(Yn)2sin(  Yn)

 (

17) 

 
9. Dyadic map 

Also known as the dyadic map bit shift map, 2x mod 

1 map, Bernoulli map, doubling map or saw tooth 

map. Dyadic map can be formulated by a mod 

function: 

 

Yn+1 = 2Yn mod 1
 (

18) 

 
10 . Singer map 

Singer map can be written as: 

Yn+1 = µ(7.86Yn − 23.31Y2 + 28.75Y3 − 13.3Y4 
(19) 

 

 
 

 between 0.9 and 1.08 

11.Tent map 

This map can be defined by the following equation: 

 
µYn  Yn < 0.5 

µ(1 − Yn) Yn ≥ 0.5 

constrained problem into unconstrained ones, 

consisting of a sum of the objective and the 

constraints weighted by penalties. By using penalty 

function methods, the objectives are inclined to 

guide the search toward the feasible solutions. Hence, 

in this paper the corresponding objective function 

used in is defined and described as: 

 

min F (x)  f (x)  max(0, gn ) 



 

 

THE PROPOSED ALGORITHM (IBACH) FOR SOLVING 

INTEGER PROGRAMMING PROBLEMS 

In the proposed chaotic Bat algorithm, we used 

chaotic maps to tune the Bat algorithm parameters 

and improve the performance [40]. The steps of the 

proposed chaotic Bat Algorithm for solving integer 

programming problems are as follows: 

 

Step 1 Set the initial conditions: population xi (i = 1, 2 

...n) and Vi, pulse frequency fiat xi and pulse rates ri 

and the loudness Ai 

 

Step 2 Calculate the average position and the 

optimal position of the bat colony. 

 

Step 3 Using the equations 4 to 6 update velocities 

and locations/solutions and Generate new solutions 

by adjusting frequency. 

 
fi = fmin + (fmax -fmin)Si ,where si ≡ chaotic map
 
(21) 

where f(x) is the objective function for assignment 

problem,  is the penalty coefficient and it is set to 

107 in this paper , K is the number of constraints and 

gn the constraints of the problem. 

 
 

Step 4 If (rand > ri) then select a solution among the 

best solutions and generate a local solution around 

the selected best solution with the following equation 
 

xnew=xold+At

 

(24) 

Where[-1,1] If not, skip this step. 

 

Step 5 If (rand < Ai &f(xi) < f(x))then accept the new 

solutions. Increase ri and reduce Ai with the 

following two equations 

Where n is the iteration number, all the 

experiments were performed on a Windows 7 

Ultimate 64-bit operating system; processor Intel 

Core i5 760 running at 

2.81 GHz; 4 GB of RAM and codes were 

implemented in C#. 

A. Test Problem 1 

Max z= 

7x1+9x2 

s.t. 

-

x1+
3x2≤

6 

7x1

+x2

≤35 

x1, x2 ≥ 0 and integer. Step 6 Rank the bats and find 

the current best X. 
 

Step 7 If the iterations attain to the maximum 

number, then stopped and output the global optimal 

solution. If not, go to step 2 to continue the search. 

 
A. Handling Constraints 

One of the well-known techniques of handling 

constraints is using penalty function, which 

transforms 
4x1 + 5x6 + x8 +14x10 + 11x12 + x13-5x14 + x15 + 
11x16 + 3x18 + 

3x20 ≥ 16 

xi ≥0, i=1,2,…,20 and integer. 

 
C. Test Problem 6 

max Z= x1 + 2x2 + 7x3 + 2x4 + x5 + 4x6 + x7 -5x8 + x9 + 2x10 + 4x11 + 7x12 + 5x13 + 3x14 + 9x15 + 5x16 + x18 + 8x19 
+ 6x20 + x21 -3x22 + 7x23 - x24 -3x25 + 2x26 + x27 + 9x28 + 7x29 + 4x30 

s.t. 

2x1 + 2x3 + x12+ 9x15 -3x20 + 3x29 ≤ 70 

2x1 + 5x5+ 2x13 + 2x15 + 2x16 + 2x28 ≤ 19 
x2 + x3 + x4 + x7 + 2x8 + x11+8x14 + 2x25 ≤ 20 2x8 - x11-3x12 -3x13 + 2x19 + x20 +3x22 + x23 ≤ 11 

-3x11 + x14 + 3x15 + 2x16 + x18+ 2x22 + 2x26 ≤ 95 2x12 + x14 + 2x15 + 2x18 + 2x24 + 2x25 + 3x27 ≤ 40 

x2 + x3 + x4+ 2x8 + 2x10 + x17 + x18 + x20 + x21 + x22 ≤ 35 
4x1 + 2x9 + x10+3x13 + 3x16 -9x17 + x18 + x24 + 5x27 + 4x29 + 

x30 ≤ 40 
-3x5 + x9 +2x12 + 5x13 + 4x16 + x17 + x19 + x21+ 4x25 -3x27 + 2x30 ≤ 100 
5x1 + x3 + x5 + 2x6 + x8 + 2x9 - x10+5x12 + x14 + x15 + 3x16- 

9x17 + x18 ≤ 7 

x1+ 2x6 + 2x7 + 2x14 + 11x15 + x16 -3x21 + 10x24 + 2x25 + 8x26 
-3x28 + 11x29 ≤ 62 

x2 + x4 + x7 + x9 + 2x11 -9x13 + 2x17 + 5x18 + x20 + x21 4x24 
+ 3x26 +  5x27 + 4x30 ≤ 51 
x1 + x3 + 2x4 + 2x6 + 3x7 + 2x8 -2x10 + 2x13 -5x15 + 2x19 + 3x20 + 4x21 +  3x23 + 4x28 ≤  22 

2x2 + x4 + 5x5 + 4x6 + 2x7 + 3x13 + 8x17 + 2x19 + x21 + 

2x22 + 2x23 + 2x24 + 10x25 -3x26 + 2x27 + 3x28 + 2x29 + x30 

≤ 60 

xi ≥0, i=1,2,…,30 and integer. 
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Table 1 Optimal solution of selected problems 
 

 
Exact method 

The Best Solution 

 
Optimal 

sol. 

 

Optimal values 

 

PSO[24] 

 

HS[53] 

 

IHS[54] 

 

BA[28] 

 

IBACH 

problem1 55 Xi=(4,3) 
55 

55 55 55 55 

problem2 26 Xi=(2,1,6) 
24 

21 25 24 26 

problem3 9 Xi=(1,1,0,0,0) 
8 

7 9 9 9 

problem4 9 Xi=(0,2,0,2,3,1,0,0,2,3) 
7 

6 7 7 9 

problem5 16 Xi=(0,0,0,0,0,0,0,0,0,1,4,0,4,3,0,2,4,0,3,0) 
14 

11 13 14 16 

problem6 446 Xi=(0,0,0,0,0,0,0,0,0,16,20,4,4,0,3,0,0,0,24,3,0,0,0,0,0,4,0,1,0,8) 
443 

405 422 440 446 

Table 1 shows the results of IBACH algorithm are privileged compared with the results of particle swarm optimization 

(PSO), Standard harmony search algorithm (HS), standard bat algorithm (BA) and improved harmony search algorithm 

(IHS). In comparison with exact values we find that the results of IBACH algorithm are very close to the exact values of 

selected problems under the study. If a large number of variables are to be found, then it is hard to go past the classical 

methods. More usually, though, users will choose to use the proposed algorithm, to save their own time and to gain 

reliability. for example when we solved test problem number 6 by proposed algorithm it took time 7 seconds ,but 

when we solved it by branch and bound(exact method) it took time 396 seconds . 

The reason for getting better results than the other algorithms considered is that the search power of bat algorithm. 

Adding to this, using chaos improves the performance of the algorithm. 

 
 

CONCLUSIONS 

This paper has introduced an improved Bat 

Algorithm by blending with chaos for solving integer 

programming problems. Several examples have been 

used to prove the effectiveness of the proposed 

methods. The proposed algorithm managed to solve a 

large scale of problems that traditional method could 

not solve due to exponential growth in time and space 

complexities. The solution procedure will not face the 

same time waste in going through non-converging 

iterations as traditional methods do. IBACH algorithm 

is superior to both HS and IHS in terms of both 

efficiency and success rate. This implies that IBACH 

is potentially more powerful in solving NP- hard 

problems. 
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