
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.8, No 3, July– Sep 2018

T

Software Reuse Research: Status and Future

William B. Frakes and Kyo Kang

Abstract—This paper briefly summarizes software reuse

research, discusses major research contributions and

unsolved problems, provides pointers to key publications,

and introduces four papers selected from The Eighth

International Conference on Software Reuse (ICSR8).

Index Terms—Software reuse, domain engineering, research,

metrics, architectures, generators, finance.

INTRODUCTION

HIS paper briefly summarizes software reuse research,
discusses major research contributions and unsolved

problems, provides pointers to key publications, and

introduces four papers from The Eighth International
Conference on Software Reuse (ICSR8) selected on the

recommendations of conference reviewers and attendees.

We have been helped in writing this paper by responses to
a brief survey of longtime reuse researchers and

practitioners who were asked four questions:
What are the top three contributions from reuse research?

What are the top three remaining problems for reuse

research?
What are the top three references in your area of reuse

research?
Anything else you would suggest for inclusion? Their

responses varied widely, both by topic and what they

considered important. Despite this variability
certain

common themes emerged, and we will discuss these

in
greater detail.

We begin with some basic definitions. Software reuse is
the use of existing software or software knowledge to

construct new software. Reusable assets can be either

reusable software or software knowledge. Reusability is
a property of a software asset that indicates its

probability of reuse.

Software reuse’s purpose is to improve software quality
and productivity. Reusability is one of the “illities” or

major software quality factors. Software reuse is of
interest because people want to build systems that are

bigger and more complex, more reliable, less expensive

and that are delivered on time. They have found
traditional software engineering methods inadequate,

and feel that software reuse can provide a better way of

doing software engineering.
A key idea in software reuse is domain engineering (aka

product line engineering). The basic insight is that
most

software systems are not new. Rather they are variants
of systems that have already been built. Most

organizations build software systems within a few

business lines, called domains, repeatedly building
system variants within those domains. This insight can

be leveraged to improve the quality and productivity of
the software production process.

HISTORY

Software reuse has been practiced since programming

began. Reuse as a distinct field of study in software
engineering, however, is often traced to Doug

Mcilroy’s paper which proposed basing the software
industry on reusable components. Other significant early

reuse research developments include Parnas’ idea of

program families and Neighbors’ introduction of the
concepts of domain and domain analysis.

Active areas of reuse research in the past twenty
years include reuse libraries, domain engineering

methods and tools, reuse design, design patterns,

domain specific soft- ware architecture, componentry,
generators, measurement and experimentation, and

business and finance. Important ideas emerging from
this period include systematic reuse, reuse design

principles such as the three C’s model, module

interconnection languages, commonality/variability
analy- sis, variation point, and various approaches to

domain specific generators.

While these areas comprise the core of reuse

research, software reuse research and practice has deep
and complex interactions with other areas of computer

science and software engineering. For example, though

its developers did not consider themselves as doing
reuse research per se, reuse was clearly a key design

goal of the Unix program- ming environment. The C

language was designed to be small and augmented with
standard libraries of reusable functions. Shell

programming languages are based on reusable filter
programs that are combined via a module

interconnection language—data pipes. The C++

language was also designed to encourage reuse as
described in [1].

Other areas of computer science research of key
relevance to reuse are abstract datatypes and object

oriented methods, programming language theory, software
architec- tures, compilers, software development process

models, metrics and experimentation, and organizational

theory.

BUSINESS AND FINANCE

The ultimate purpose of domain engineering and

systema- tic software reuse is to improve the quality of the

products and services that a company provides and,

thereby, maximize profits. It is easy to lose sight of this

goal when considering the technical challenges of software

reuse and yet, software reuse will only succeed if it makes

good business sense. Capital can be expended by an

organization in many ways to maximize return to

shareholders. Software reuse will only be chosen if a

good case can be made that it is the best alternative

choice for use of capital.

Business related reuse research has identified

organiza-

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.8, No 3, July– Sep 2018

tional structure to support corporate reuse programs,

staged process models for reuse adoption, and models for

estimat- ing return on investment from a reuse program.

More recent work has extended the return on investment

analysis to include benefits from strategic market position

[2].

Important problems remaining in this area include:

● Sustaining reuse programs.

● Tech transfer.

● Reuse and corporate strategy.

● Organizational issues.

● Process focus.

We will now discuss some of these issues.

3.1 Process Focus

Implementing a reuse program in a corporate

environment requires a decision about when and where a

capital investment is to be made. Development of

reusable assets often requires a capital investment and

there should be a strategic decision as to whether

investment will be made proactively or reactively.

Proactive investment for software reuse is like the

waterfall approach in conventional software

engineering. The target domain or product line is

analyzed, architectures for the domain are defined, then

reusable assets are designed and implemented taking

foreseeable product variations into account. This

approach tends to require a large upfront investment,

and returns on investment can only be seen when

products are developed and maintained. This approach

might be suited to organizations that can predict their

product line requirements well into the future and that

have the time and resources for a long develop- ment

cycle. There is an investment risk with this approach if

product line requirements deviate from the projections.

The cost for evolving reusable assets and retrofitting

products with new assets can be high.

Reactive investment is an incremental approach to asset

building. One develops reusable assets as reuse opportu-
nities arise while developing products. A subdomain

with a clear problem boundary and projected

requirements varia- tions might be a good candidate.
This approach is advantageous in that the asset

development costs can be distributed over several
products and no upfront large capital investment is

necessary. However, if there is no sound architectural

basis for the products in a domain, this approach can be
costly as existing products may continu- ously have to

be reengineered when assets are developed.

This approach works in situations where the
requirements for product variations cannot be predicted

well in advance. Another approach proposed by
Charles Kruger, called the extractive model, stays in

between the proactive and reactive approaches [3]. The

extractive approach reuses one or more existing software
products for the product line’s initial baseline. This

approach can be effective for an organization that has
accumulated development experi- ences and artifacts in

a domain but wants to quickly transition from

conventional to software product line engineering.
When accumulated expertise is used properly,

this approach may not require a large capital

investment.
Organizational Issues

There are two types of commonly observed organizational

approaches to establishing a reuse program: centralized and

distributed asset development.
The centralized approach typically has an organizational

unit dedicated to developing, distributing, maintaining,
and, often, providing training about reusable assets. The

unit has responsibilities to analyze commonalities and

variabilities of applications within the product line that
have been developed or that will be developed in the

future. The unit also develops standard architectures and

reusable assets, and then makes them available to
develop- ment projects. The unit maintains these assets

and, often, also supports customization. The cost of this
organizational unit is amortized across projects within

the product line.

Some of the advantages of this approach are that 1) the
product line-wide engineering vision can be shared

among the projects easily, 2) development knowledge

and corpo- rate expertise can be utilized efficiently across
projects, and

3) assets can be managed systematically. There are also
disadvantages with this approach. This approach often

requires a large upfront capital investment to create an

organizational unit dedicated to implementing a reuse
program and it takes time to see a return on investment.

Also, experts may have to be pulled away from on-going

projects to create a centralized core expert group, which
may face strong resistance from project managers.

There- fore, to be successful, there must be a strong
commitment from upper management. Distributed,

Collaborative

With the distributed approach, a reuse program is
implemented collaboratively by projects in the same

product line. Each project has a responsibility to
contribute reusable assets to other participating projects

and, therefore, asset development and support

responsibilities are distrib- uted among projects.
The obvious advantages of this approach are that 1) there is

less overhead cost as there is no need to create a separate

organizational unit, and 2) asset development costs
are distributed among projects. No large up-front

investment is necessary.
Some of the disadvantages are that 1) it may be difficult

to coordinate asset development responsibilities if there

is no common vision for the reuse program; 2) even if there
is a shared vision among projects, it may not be easy for a

given project to provide a component that meets the needs

of other projects; and 3) there must be a convincing
cost/benefit

model to solicit active participation. There is a danger

that projects may be willing to use other’s products, but

will be reluctant to make investments for others.

MEASUREMENT AND EXPERIMENTATION

If software reuse is to be based on science and engineering, it

must be treated as an empirical discipline. The develop- ment

of concepts such as reuse and reusability has naturally led to
questions of how to measure them, and of how to run

experiments to establish their impact on quality and

productivity. Metrics have been defined for many areas of
software reuse [4]. These include classification models of

types of reuse, reuse library metrics, cost benefit models,
maturity assessment models, amount of reuse metrics, failure

modes models, and reusability assessment models. A software

metric is a quantifiable measurement of an attribute of a
software product or process. A model is a stated relationship

among metric variables. Experimenta- tion is the process of

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.8, No 3, July– Sep 2018

establishing the effect of one set of variables on another.

Experiments in software reuse have included studies of
indexing methods for reusable components and correla- tional

studies of the relationship between reuse, quality, and
productivity. Much data on the effect of reuse on important

variables such as cost of software production, time to market,

and project completion time has also been reported, though
these studies tend to be quasi-experi- mental. Such studies

have the typical problems of field studies in trying to control

the internal validity of the experiments. Measurement and
experimentation of reuse and domain engineering is one area

where much more work is needed.

COMPONENTRY

The broad interest in component-based software engineer- ing

has resulted in several component development, integration
and deployment technologies. Most noted of these are Object

Management Group (OMG)’s Common Object Request

Broker Architecture (CORBA) Component Model (CCM),
Sun’s Enterprise JavaBeans (EJB), and Microsoft’s

Component Object Model (COM+).

CORBA CCM allows integration and invocation of distributed
components without concern for object location, programming

language, operating system, communication protocol, or
hardware platform. Concerns that cut across components, such

as transaction handling, security, persis- tent state

management, and event notification, are sup- ported by
CORBA Object Services (COS).

EJB along with Java Remote Method Invocation (RMI)
provides, as with CORBA, a platform for developing,

integrating, and deploying distributed components. EJB

provides an environment for handling complex features of
distributed components such as transaction management,

connection pooling, state management, and multithreading.

This technology depends on the Java language but it achieves
platform independence through the language. EJB, together

with J2EE and Java servlets, provides a middleware platform
for developing Web applications.

COM+ provides runtime services, such as transaction

management, synchronization, threading, and object pool- ing,
for developing distributed applications on Microsoft’s

Windows platform. While permitting integration of binary

components written in any language, COM, that works under
COM+, requires them to obey the rules of COM component

identity, lifetime and binary layout, and writing the plumbing
code to create a COM component. .NET frees one from

having to obey all these rules and write extra code and allows

development of applications accessing distrib- uted systems
on internal corporate networks or the Internet. These

technologies are still evolving, but they provide important

middleware platforms on which reusable com- ponents can be
developed, applications can be created integrating these

components, and applications thus created
can run.

Each of the technologies discussed above supports a set of

features, or concerns, such as security, that cut across a
number of components. Aspect oriented programming

supports implementation of these cross-cutting concerns,
called aspects, and integration of these into functional

components.

DOMAIN ENGINEERING

(PRODUCT LINE ENGINEERING)
Technologies for high software productivity through domain
engineering started to appear in early 1980s, but, application

of these technologies in industrial settings and stories of

successes have only been reported recently. One such report is

the paper by Van Ommering in this issue. The paper in this
issue by Moon et al. discusses an approach to the important

problem of handling requirements for systems in a product
line.

In this section, we briefly review several domain engineering

(aka product line engineering) approaches reported in recent
publications. The technologies reviewed in this section fall

largely into two categories: process and technique. FAST

defines a product line engineering process model. All others
are development techniques but these techniques compliment

each other in that DARE focuses on extracting information
from existing code and documents to help analysts create

domain models, FORM focuses on the commonality and

variability analysis of the features of applications in a product
line to use as a foundation for creating architectures and

components, KobrA defines both processes and techniques for

developing components and integrating them to create
applications, and Koala has a component focus and provides a

mechanism for integrating components. PLUS provides UML
extensions to support product line engineering. Each of these

technologies is summarized below.

DARE

DARE, domain analysis and reuse environment, is a
method and toolset for doing domain engineering [5].
One of the major research goals of DARE was to
explore how much of domain analysis can be based on
a repeatable process and how much can be automated.
The DARE process draws on three sources of
information: code, documents, and expert knowledge
as the basis for domainmodels. Information extracted
from these three sources is used to build domain models
such as facet tables and templates, feature tables, and
generic architectures. All information and models are
stored in a domain book. DARE has been used
successfully in industry, for example, to support the
building of text and database systems at Oracle [6].

6.1 FAST

Lucent Technologies introduced Family-Oriented

Abstrac- tion, Specification, and Translation (FAST)
method in 1999 [7]. FAST defines a pattern of

engineering processes that are commonly used in product

line engineering. FAST consists of three subprocesses:
domain qualification (DQ), domain engineering (DE),

and application engineering (AE). DQ identifies a
product line worthy of investment, DE develops product

line assets and environments, and AE develops products

rapidly by using the product line assets.

FAST focuses on the processes for product line

engineer- ing and it has been applied to the product line of

telecommunication infrastructure and systems at Lucent
Technology.

6.2 FORM

Feature-Oriented Reuse Method (FORM) was

developed at Pohang University of Science and
Technology (POSTECH)

[8] and is an extension of the Feature-Oriented Domain
Analysis (FODA) method [9]. FORM is a systematic

method that looks for and captures commonalties and

variabilities of a product line in terms of “features.” These
analysis results are used to develop product line

architectures and components. The model that captures

the commonalties and variabilities is called a feature
model. It is used to support both engineering of reusable

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.8, No 3, July– Sep 2018

product line assets and development of products using

the assets.

This method has been applied to several industrial
application domains, including electronic bulletin board

systems, PBX, elevator control systems, yard inventory

systems, and manufacturing process control systems, to
create product line software engineering environments

and software assets [10]. FORM includes techniques and
tools for product line engineering but has a loose

process structure.

6.3 KobrA

Fraunhofer IESE has been developing the KobrA

method, a component based product line engineering

approach with UML. KobrA is an abbreviation of

Komponentbasierte Anwendungsentwicklung and

means a component-based application development

method [11]. KobrA provides an approach to

developing generic assets that can accommo- date

variations of a product line through framework

engineering. The framework engineering starts with de-

signing a context under which products of a product line

will be used. The context includes information on the

scope, commonality, and variability of the product line.

Then, product line requirements are analyzed and the

Komponent (i.e., KobrA component) specifications are

developed. Based on the specifications, the Komponent

realizations, which describe the design that satisfies

the requirements, are

developed. KobrA also provides a decision model that

constrains the selection of variations for the valid

config- uration of products. KobrA includes both

processes and techniques for product line engineering.

6.4 PLUS

Product Line UML-Based Software Engineering

(PLUS) extends the UML-based modeling methods for

single systems development to support software

product lines [12]. PLUS provides various modeling

techniques and notations for product line engineering.

First, for the software product line requirements

engineering activity, use case modeling and feature

modeling are provided. Second, for the software

product line analysis activity, static modeling, dynamic

interaction modeling, dynamic state machine modeling,

and feature/class dependency model- ing are

introduced. Last, for the software product line design

activity, software architecture patterns and compo-

nent-based software design are proposed. PLUS

extends UML by integrating various product line

engineering techniques to support UML-based product

line engineering.

6.5 Koala

Koala, developed at Philips Corp. for analysis of

embedded software in the domain of electrical home

appliances, is an architecture description language [13]

for product lines. Koala is a descendant of Darwin [14]

and is designed based on the experience of applying

Darwin to television software systems. In Koala, diversity

interfaces and switches are provided for handling product

variations. The diversity interfaces can be used to handle

the internal diversity of components and the switch can be

used to route connec- tions between interfaces. When a

component provides some extra functions, the access to

these functions can be defined as optional interfaces. This

enables the optimization of the code at compile time.

Koala is a component-based product line engineering

method with tools for integrating compo- nents both at

compile-time and at runtime.

PROGRAMMING LANGUAGES

The evolution of programming languages is tightly

coupled with reuse in two important ways. First,

programming languages have evolved to allow
developers to use ever larger grained programming

constructs, from ones and zeroes to assembly
statements, subroutines, modules, classes, frameworks,

etc. Second, programming languages have evolved to be

closer to human language, more domain focused, and
therefore easier to use. Languages such as Visual

C++, Delphi, and Visual Basic clearly show the

influence of software reuse research. The paper on
the Fusion system by Weber et al. in this issue is a

continuation of the trend of making large grained
domain specific programming constructs, in this case

business rules, available in a form closer to the language

used by workers in the domain. Fusion also mixes
declarative and algorith- mic programming language

approaches in a single system.
Systematic reuse via domain engineering is another step

in this direction. In systematic reuse, we consider how to

Fig. 1. Architecture Concepts.

codify and reuse subsystems and architectures. We attempt

to establish the required vocabulary for a given problem
area, apply it to the system building environment for that

domain, and, thereby, build higher quality systems more

productively.

Reuse research has contributed to the widespread
practice of design to interfaces, the practice of separating

interfaces from implementations, and to the common use

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.8, No 3, July– Sep 2018

of off the shelf libraries of general components such as

those for C, C++, Java, and C#. Some research on
restricting the use of pointers in languages and better ways

of handling reference aliasing has also been active.

1 LIBRARIES

A reuse library consists of a repository for storing reusable
assets, a search interface that allows users to search for assets

in the repository, a representation method for the assets, and

facilities for change management and quality assessment.
Much research on reuse libraries has been done as reported in

the papers in the reuse roadmap. Key ideas are the application

of indexing methods such as free text keyword and faceted
classification to reusable components. There has been

disagreement in the reuse research community about the
importance of libraries for reuse. However, failure modes

analysis of the reuse process shows that in order to be reused a

component must be available, findable, and understandable. A
reuse library supports all of these. The argument has also been

made that most component collections are small and,

therefore, do not need sophisticated library support. However,
the emergence of the World Wide Web as a defacto standard

library of
reusable assets argues against this point of view.

Experiments on reuse libraries indicate that current methods

of component representation could be improved. There is also
a need for library environments that include facilities for

configuration management and that integrate facilities for
measurements such as usage and return on investment. The

paper by de Jonge in this issue discusses how to handle the

build process for reusable components.

2 ARCHITECTURES

Since the late 1980’s software architecture has been

recognized as an important consideration for reusing software.
Architectural decisions because they occur early

in the software lifecycle, have a strong impact on system

quality attributes. Architectural decisions are also difficult to
change late in the lifecycle.

Software architecture may be explored at different levels of
abstraction. Shaw explored various structural models called

architecture styles, that were commonly used in software and

then examined quality attributes related to each style. At a
lower level of abstraction than style, [15] identified

architectural patterns that commonly occur in various design

problem domains such as client-server architectures, proxies,
etc. In theory, these architecture patterns can be defined by

applying a combination of architecture styles.
Using architecture patterns, reference architectures for

an application domain or a product line can be built. These

architectures embody application domain-specific seman- tics
and quality attributes inherited from the architecture patterns.

Application architectures may be created using domain

architectures. Examples of domain architectures are reported
in [16].

Platform architectures are middleware on/with which
applications and components for implementation of an

application can be developed. Examples of these are CORBA,

COM+, and J2EE. A platform architecture selected for
implementation of applications in a domain may influence

architectural decisions for a domain architecture. For example,
transaction management is supported by most of platform

architectures and a domain architecture may use facilities

provided by the platform architecture selected for the domain.
The relationships between these concepts related to

architectures are summarized in Fig. 1.

3 GENERATIVE METHODS

An important approach to reuse and one tightly coupled

to the domain engineering process is generative reuse.

Gen- erative reuse is done by encoding domain

knowledge and relevant system building knowledge

into a domain specific application generator. New

systems in the domain are created by writing

specifications for them in a domain specific

specification language. The generator then trans- lates

the specification into code for the new system in a

target language. The generation process can be

completely automated, or may require manual

intervention.

Important contributions to generative reuse include the
development of the theory of metacompilers, also known
as application generator generators. These tools assist in

the development of domain specific application

generators.
An important part of making domain engineering

repeatable is a clear mapping between the outputs of
domain analysis and the inputs required to build
applica- tion generators. Better integration of these two
phases of domain engineering will mean much
improved environ- ments for domain engineering.

4 RELIABILITY AND SAFETY

Better system reliability is one of the goals of software

reuse. It is argued that reusable components, because of more
careful design and testing and broader and more extensive

usage, can be more reliable that one use equivalents. If so,

then it is further argued that using these more reliable
components in a system architecture can increase the

reliability of the system as a whole. Higher system reliability
via generative reuse is based on the idea that replacing error

prone human processes in software development by

automation can produce a more reliable system. There are
many open research questions in this area that need to be

addressed before these hypotheses can be verified.

A topic related to reliability is software safety. Two software
safety failures have been attributed to reuse. In the Therac-25

system, a software component carried over from a previous
version of the system caused the machine to malfunction

resulting in the loss of several lives [17]. In the Ariane project,

failure of a software component, caused the loss of a rocket
costing around half a billion dollars [18].

Of concern regarding reliability and safety of compo- nents

is emergent behavior, defined as system behavior that cannot
be predicted on the basis of the behavior of components

comprising the system. As components are designed to be
more autonomous and intelligent, unpre- dictable system

behavior based on component interactions is an area of needed

research.

5 FUTURE RESEARCH

Though significant progress has been made on software
reuse and domain engineering, many important problems

remain. One of these has to do with scalability which is the
problem of applying reuse and domain engineering

methods to very large systems. One important issue is

how to make best use of reusable components for
systems of this size. Another is how to do sufficient formal

specifications of architectures to support the automated
construction of very large systems. Reuse and domain

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.8, No 3, July– Sep 2018

engineering methodologies also need to be wider spectrum,

that is applicable to a broader range of software
domains.

Better representation mechanisms for all software assets,
including means for specification and verification, are

needed. Researchers point to the need for support and

enforcement of behavioral contract specifications for com-
ponents. This may be summarized as a movement from

design to interfaces to design by contract. They also argue

for better methods for specification and reasoning
support for

popular component libraries, and for work on
elimination of reference semantics in industrial

languages.

Another important problem is sustainability. There have
now been many industrial reuse programs. A current

problem is to find the means of sustaining reuse

programs on a long-term basis. One approach to this
problem will be determining how to make better links

between reuse and domain engineering and corporate
strategy. Related to this question is identifying what

should be made reusable, that is, which reusable

corporate products and processes will give the highest
return on investment? Another is deter- mining how to

do better technology transfer; that is, how to better

support practitioners in the application of reuse and
domain engineering research. Needed for this is a deeper

understanding of when to use particular methods, based,
for example, on system size and business context. There

is also a need for a seamless integration between the

models output from domain analysis and the inputs
needed to for domain implementations such as

components, domain specific languages, and application
generators.

As discussed above, safety and reliability issues are

important and must be adequately addressed if reuse is
to be a common practice. Another area of potentially

interest- ing research concerns the relationship of reuse

and domain engineering to newer software development
processes such as agile methods.

A key element in the success of reuse and domain
engineering is the ability to predict needed variabilities

in future assets. This is sometimes called the oracle

hypoth- esis. Richer means of specifying potential reuser
needs is an area needing research. This will involve a

method for clearly stating reuse contexts and

assumptions.
There is a clear need for much more empirical work on

reuse and domain engineering. Research is needed to
identify and validate measures of reusability, including

good ways to estimate the number of potential reuses.

Industry studies have shown that education is a primary
factor in better reuse, yet there had been little systematic

study of how best to do reuse education. Certainly, both
academia and industry could improve educational prac-

tices. One way to do this and to facilitate better reuse

technology transfer would be better joint work between
industry and academia.

Currently, most reuse research focuses on creating and

integrating adaptable components at development or at
compile time. However, with the emergence of ubiquitous

computing, reuse technologies that can support adaptation
and reconfiguration of architectures and components at

runtime are in demand. One implication of this develop-

ment is that we somehow need to embed engineering
know-how into code so it can be applied while an

application is running. More research on self-adaptive

software, reconfigurable context-sensitive software, and

self-healing systems is needed.
Reuse research has been ongoing since the late 1960s and

domain engineering research since the 1980s. Much has
been accomplished, but there is still much to do before

the vision of better system building via reuse and domain

engineering is completely achieved.

APPENDIX A

REUSE ROADMAP: A GUIDE TO THE LITERATURE

OF

SOFTWARE REUSE AND DOMAIN ENGINEERING

These references have been selected to give researchers
and practitioners quick access to reuse and domain
engineering sources, not for their historical importance.

A.1 Website

ReNews (http://frakes.cs.vt.edu/renews.html) is a
Website that provides software reuse and domain
engineering information including component sources,
tool descrip- tions, references to books and articles, and
information on workshops and conferences.

A.2 Conferences and Workshops

The main conference on software reuse and domain
engineering is the International Conference on Software
Reuse (ICSR). The latest, ICSR8, was held in Madrid in
2004. The next is planned for Turin in the summer of
2006. Other significant conferences on reuse have
included SSR, the WISR workshops, and SAVCBS.
Information on these events can be found on the
ReNews website.

A.3 Architecture

M. Shaw and D. Garlan, Software Architecture:

Perspectives on an Emerging Discipline. Prentice Hall,
1996.

L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, second ed. Addison-Wesley,

2003.

R. Kazman, M. Klein, and P. Clements “ATAM:
Method for Architecture Evaluation,” CMU/SEI-
2000-TR-004, Soft- ware Eng. Inst., Carnegie
Mellon Univ., Pittsburgh. Penn., 2000.

A.4 Domain Engineering

P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns. Addison-Wesley, 2002.

W. Frakes, R. Prieto-Diaz, and C. Fox “DARE: Domain

Analysis and Reuse Environment,” Annals of
Software Eng., vol. 5, pp. 125-141, 1998.

K.C. Kang et al., “Feature-Oriented Domain Analysis
(FODA) Feasibility Study,” Technical Report
CMU/SEI- 90-TR-21, Software Eng. Inst., Carnegie
Mellon Univ., Pittsburgh, Penn., 1990.

D.M. Weiss and C.T.R. Lai Software Product-Line
Engineering: A Family-Based Software Development
Process. Addison- Wesley, 1999.

A.5 Reuse Design

J. Sametinger, Software Engineering with Reusable

Components. New York, 1997.

C. Szyperski, D. Gruntz, and S. Murer, Component

Software: Beyond Object-Oriented Programming,
second ed. Addi- son-Wesley, 2002.

B.W. Weide, W.F. Ogden, and S.H. Zweben “Reusable

http://frakes.cs.vt.edu/renews.html)

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.8, No 3, July– Sep 2018

Software Components,” Advances in Computers, vol.

33, M. Yovits, ed., pp. 1-65, 1991.

E. Gamma, R. Helm, J. Johnson, and J. Vlissides Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison Wesley, 1995.

Reuse Libraries

W.B. Frakes and P. Gandel, “Representing Reusable Soft-

ware,” Information and Software Technology, vol. 32, no.
10, pp. 47-54, 1990.

A. Mili, R. Mili, and R. Mittermeir, “A Survey of
Software Reuse Libraries,” Annals Software Eng., vol.

5, pp. 349- 414, 1998.

A.6 Generative Methods

T.J. Biggerstaff “A Perspective of Generative Reuse,”
Annals of Software Eng., vol. 5, pp. 169-226, 1998.

K. Czarnecki, and U.W. Eisenecker Generative

Programming: Methods, Tools, and Applications.
ACM Press/Addison- Wesley, 2000.

A.7 Programming Languages and Reuse

J. Bentley, “Little languages,” Comm. ACM, vol. 29,
no. 8, pp. 711-721.

B. Stroustrup “Language-Technical Aspects of Reuse,”
Fourth Int’l Conf. Software Reuse (ICSR ’96), pp.

11-19, 1996.

I. Jacobson, M. Griss, and P. Jonsson Software Reuse:

Architecture, Process, and Organization for Business
Success. Addison-Wesley, 1997.

A.8 Reuse Management and Economics

J. Favaro, K. Favaro, and P. Favaro, “Value Based
Software Reuse Investment,” Annals of Software Eng.

vol. 5, pp. 5- 52, 1998.

W. Lim, Managing Software Reuse : A Comprehensive

Guide to Strategically Reengineering the Organization

for Reusable Components. Prentice Hall, July 1998.

A.9 Reuse Measurement

W. Frakes and C. Terry, “Software Reuse: Metrics and

Models,” ACM Computing Surveys, vol. 28, no. 2, pp.
415- 435, 1996.

J.S. Poulin, Measuring Software Reuse: Principles,
Practices, and Economic Models. Addison-Wesley,

1997.

ACKNOWLEDGMENTS

The guest editors would like to thank the reviewers of

the papers included in this special issue, the attendees
who helped select the papers, and the reuse researchers

and practitioners who responded to their survey:

Sidney Bailin, Young Cho, John Favaro, Wayne Lim,
Ali Mili, Bruce Weide, and David Weiss. They

would also like to thank Juan Llorens and

Universidad Carlos III de Madrid for hosting ICSR8.

REFERENCES

B. Stroustrup, “Language-Technical Aspects of
Reuse,” Proc. Fourth Int’l Conf. Software Reuse (ICSR

’96), 1996.
J. Favaro, K. Favaro, and P. Favaro, “Value Based

Software Reuse Investment,” Annals of Software Eng., vol.

5, pp. 5-52, 1998.
C. Krueger, “Eliminating the Adoption Barrier,” IEEE

Software,
pp. 29-31, July/Aug. 2002.

W. Frakes and C. Terry, “Software Reuse: Metrics and

Models,”
ACM Computing Surveys, vol. 28, pp. 415-435, 1996.

W. Frakes, R. Prieto-Diaz, and C. Fox, “DARE:

Domain Analysis and Reuse Environment,” Annals of
Software Eng., vol. 5, pp. 125- 141, 1998.

O. Alonso, “Generating Text Search Applications for
Databases,”

IEEE Software, pp. 98-105, 2003.

D.M. Weiss and C.T. R. Lai, Software Product-Line
Engineering: A Family-Based Software Development

Process. Addison-Wesley, 1999.

K.C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented
Product Line Engineering,” IEEE Software, vol. 19, no.

4, pp. 58-65, July/ Aug. 2002.
K.C. Kang et al., “Feature-Oriented Domain Analysis

(FODA) Feasibility Study,” Technical Report

CMU/SEI-90-TR-21, Software Eng. Inst., Carnegie
Mellon Univ., Pittsburgh, Penn., 1990.

K.C. Kang et al., “Feature-Oriented Product Line Software

Engineering: Principles and Guidelines ,” Domain Oriented
Systems Development: Perspectives and Practices, K. Itoh et

al., eds., pp. 29-46, 2003.
C. Atkinson et al., Component-Based Product Line

Engineering with UML. Addison-Wesley, 2002.

H. Gomaa, Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures.

Addison-Wesley, 2004.
R. Ommering et al., “The Koala Component Model for

Consumer Electronics Software,” Computer, vol. 33, no.

3, pp. 78-85, Mar. 2000.
J. Kramer et al., “Software Architecture Description,”

Software Architecture for Product Families: Principles and

Practice, M. Jazayeri et al., eds., pp. 31-64, 2000.

F. Buschmann et al., Pattern-Oriented Software
Architecture.

Chichester, UK; New York: Wiley, 1996.
W. Tracz, “DSSA (Domain-Specific Software

Architecture) Peda- gogical Example,” ACM SIGSOFT

Software Eng. Notes, vol. 20, no. 3, pp. 49-62, July
1995.

N. Leveson, Safeware: System Safety and Computers.

Addison- Wesley, 1995.
B. Meyer, “.NET is Coming,” Computer, vol. 34, no. 8,

pp. 92-97, Aug. 2001.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.8, No 3, July– Sep 2018

