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Abstract 

The technology of intelligent agents and 

multi-agent systems seems set to radically 

alter the way in which complex, distributed, 

open systems are conceptualized and imple- 

mented. The purpose of this paper is to 
consider the problem of building a multi-

agent system as a software engineering 

enterprise. The article focuses on three issues: 

(i) how agents might be specified; (ii) how 

these specifications might be refined or 

otherwise trans- formed into efficient 

implementations; and (iii) how implemented 

agents and multi-agent systems might 

subsequently be verified, in order to show that 

they are correct with respect to their 

specifications. These issues are discussed 

with reference to a number of case- studies. 

The article concludes by setting out some 

issues and open problems for future research. 

 

Introduction 
 

Over its 40-year history, Artificial 

Intelligence (AI) has been subject to many 

and varied crit- icisms. Perhaps the most 

persistent and troubling of these is that AI has 

simply failed to de- liver on its promises. 

Clearly, the more extreme predictions of some 

AI researchers (such as human-quality 

intelligent robots within five decades) have 

not been realized. This would not be so 

worrying if it was obvious that AI had paid 

off in some other way: if, for example, AI 

techniques were standard components in 

workaday software. But this is not the case. 

Even comparatively mundane AI techniques 

(such as rule-based systems) are still regarded 

as home- opathic medicine by a significant 

proportion of the mainstream computer 

science community. Why is this? There are 
many reasons, including, for example, the 

reluctance of software de- velopers to learn 

about and apply new technologies, and the 

inappropriateness of mainstream software 

engineering techniques and tools for AI 

system development. But at least part of the 

answer is also that many AI researchers either 

ignore or else gloss over the pragmatic 

concerns of software development, for the 

simple reason that they do not regard 

themselves as software 
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engineers. AI prides itself on being multi-

disciplinary, taking contributions from many 

other fields; but software engineering is 

generally regarded as neither a contributor nor 

a concern. 

The most recent infants to emerge from the AI 

nursery are the notions of an intelligent agent 

and agent-based system [66]. An intelligent 

agent is generally regarded as an autonomous 

de- cision making system, which senses and 

acts in some environment (we discuss the 

question of what an agent is in more detail 

below). Agents appear to be a promising 

approach to developing many complex 

applications, ranging from INTERNET-based 

electronic commerce and informa- tion 

gathering to industrial process control (see 

[28] for a survey). But unless researchers 

recognise that agent-based systems are about 

computer science and software engineering 

more than they are about AI, then within a 

decade, we may well be asking why agent 

technology suffered the same fate as so many 

other AI ideas that seemed good in principle. 

In summary, the aim of this paper is to 

consider the problem of building agent-based 

sys- tems as a software engineering enterprise. 

In so doing, the paper constructs a framework 

within which future work on agent-based 

software engineering may be placed. The 

paper begins by motivating and introducing 

the idea of agent-based systems, and then goes 

on to discuss the key software engineering 

issues of specification, 

refinement/implementation, and verification 

with respect to agent-based systems. We begin 

by briefly discussing the question of what a 

speci- fication is, and go on to consider what 

an agent-based specification might look like. 

We then discuss some of the dimensions 

along which an agent-based specification 

framework might vary, with particular 

reference to the notion of agents as rational, 

mentalistic systems [57, 49]. We subsequently 

discuss the key issue of implementing or 

refining agent-based specifications into 

systems, and finally, we consider the 

verification of agent-based systems.  

 

 

Throughout the article, we take care both to 

illustrate the various issues with case studies, 

and to draw parallels with more mainstream 

software engineering research wherever 

possible. The article concludes with a 

discussion of future work directions. 

It should be noted that the emphasis of this 

paper is on formal methods for agent-based 

software engineering. This bias reflects the 

current state of the field. As the area matures, 

and more agent-based systems are deployed, 

we will naturally see an increasing number of 

structured but informal development 

techniques emerge. 

 

Agent-Based Systems 
By an agent-based system, we mean one in 

which the key abstraction used is that of an 
agent. Agent-based systems may contain a 

single agent, (as in the case of user interface 

agents or software secretaries [39]), but 

arguably the greatest potential lies in the 

application of multi- agent systems [6]. By an 

agent, we mean a system that enjoys the 

following properties [66, pp116–118]: 
 

   autonomy: agents encapsulate some state 

(that is not accessible to other agents), and 

make decisions about what to do based on this 

state, without the direct intervention of 

humans or others; 

   reactivity: agents are situated in an 

environment, (which may be the physical 

world, a user via a graphical user interface, a 

collection of other agents, the INTERNET, or 

perhaps many of these combined), are able to 

perceive this environment (through the use of 

potentially imperfect sensors), and are able to 

respond in a timely fashion to changes that 

occur in it; 
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   pro-activeness: agents do not simply act in 

response to their environment, they are able to 

exhibit goal-directed behaviour by taking the 

initiative; 

   social ability: agents interact with other 

agents (and possibly humans) via some kind 

of agent-communication language [17], and 

typically have the ability to engage in social 

activities (such as cooperative problem 

solving or negotiation) in order to achieve 

their goals. 
 

To more clearly understand what is meant by 

these properties, consider the following 

scenario. Imagine an autonomous automatic 

pilot controlling an aircraft, that we present 

with the goal of safely landing at some 

airport. We expect the system to plan how to 

achieve this goal (perhaps by making use of 

pre-compiled plans, rather than reasoning from 

first-principles), and if necessary, we expect it 

to generate subsidiary goals (e.g., ascend to an 

altitude of 30,000 feet, then proceed due north 

at a speed of. . . ). This is what we mean by 

pro-activeness. We also expect the system to 

try to execute its plans, but not blindly. Thus, 

in the event of unforeseen circumstances (e.g., 

a change in weather conditions, a fault in the 

aircraft, a request from air- traffic control), we 

expect the system to respond to the new 

situation accordingly, in time for the response 

to be useful. A system that spent hours 

deliberating about what to do next would be 

no use as an auto-pilot. This is what we mean 

by reactiveness. We also expect our auto-pilot 

to be able to cooperate with air-traffic 

controllers and perhaps other aircraft in order 

to achieve its goals. This is what we mean by 

social ability. Note that this example is 

intended to be extreme: it is not a claim about 

what agents can currently do, or what they 

will be able to do in the near future. It is 

merely intended to highlight the type of 

features we ultimately hope to see in agents. 

The concept of an intelligent autonomous 

agent did not appear in a vacuum. It is a 

natural development of various other trends in 

AI and computer science. In the subsections 

that follow, we discuss some ancestors of 

agents, and identify the attributes that make 

them distinct from their forbears. 

 
Agents and AI 

The discipline of intelligent agents has 

emerged largely from research in AI. In fact, 

one way of defining AI is as the problem of 

building an intelligent agent (Rusell and 

Norvig’s recent textbook on AI more-or-less 

takes this view [53]). But it is important to 

distinguish between the broad intelligence 

that is the ultimate goal of the AI community, 

and the intelligence we seek in agents. The 

only intelligence requirement we generally 

make of our agents is that they can make an 

acceptable decision about what action to 

perform next in their environment, in time for 

this decision to be useful. Other requirements 

for intelligence will be determined by the 

domain in which the agent is applied: not all 

agents will need to be capable of learning, 

for example.  Capabilities such as 

commonsense reasoning (à  la CYC  [19]) are 

not required 

for many important application domains. 

Thus, as we pointed out in the introduction, 

we view the application and exploitation of 

agent technology primarily as a computer 

science problem. Agents are simply software 

components that must be designed and 

implemented in much the same way that other 

software components are. However, AI 

techniques are often the most appropriate way 

of building agents. 
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Agents and Expert Systems 

Expert systems were the AI technology of the 

1980s [23]. An expert system is one that is 

capable of solving problems or giving advice 

in some knowledge-rich domain [26]. A 

classic example of an expert system is 

MYCIN, which was intended to assist 

physicians in the treatment of blood infections 

in humans. Perhaps the most important 

distinction between agents and expert systems 

is that expert systems like MYCIN are 

inherently disembodied. By this, we mean 

that they do not interact directly with any 

environment: they get their information not 

via sensors, but through a user acting as 

middle man. In addition, expert systems are 

not usually required to operate in anything 

like real-time. Finally, we do not generally 

require expert systems to be capable of co-

operating with other agents. 

Despite these differences, some expert 

systems, (particularly those that perform real-

time control tasks), look very much like 

agents. A good example is ARCHON [27], 

which started life as a collection of expert 

systems, and ended up being viewed as a 

multi-agent system. ARCHON operates in the 

domain of industrial process control. 

 

Agents and Objects 

Object-oriented development techniques have 

been promoted as ‘best practice’ by the 

academic computer science community for at 

least a decade. Fueled by recent popular 

interest in lan- guages such as JAVA, object-

oriented approaches are finally leaving the 

relative backwater of academia and entering 

the mainstream. While there is much ongoing 

debate about many as- pects of object-

oriented development, there is broad 

agreement that an object is an entity that 

encapsulates some state and a collection of 
methods, corresponding to operations that 

may be performed on that state. Methods are 

typically invoked as a result of messages sent 

to the object (one may think of these 

messages as requests for services). 

The most obvious difference between the 

‘standard’ object model and our view of 

agent- based systems is that in traditional 

object-oriented programs, there is a single 

thread of control. In contrast, agents are 

process-like, concurrently executing entities. 

However, there have been variants on the 

basic object model in which objects are more 

like processes: object-based concurrent 

programming models such as ACTORS [1] 

have long been recognized as an elegant 

model for concurrent computation, and 

‘active object’ systems are also quite similar; 

even comparatively early on in the 

development of object-oriented programming, 

it was recognized that something like agents 

would be a natural next step. 

Given these remarks, it may seem that agents 

are identical to (active) objects in most impor- 

tant respects: they encapsulate both state and 

behaviour, and communicate via message 

pass- ing1. But agents are not simply objects 

by another name. This is because an agent is a 

rational decision making system: we require 

an agent to be capable of reactive and pro-

active behaviour, and of interleaving these 

types of behaviour as the situation demands. 

The object-oriented re- search community has 

nothing whatsoever to say about building 

systems that are capable of this kind of 

behaviour. In contrast, the design of such 

systems is a fundamental research topic 

in the intelligent agents community [66]2. In 

addition, the object-oriented community has 

not addressed issues like cooperation, 

competition, negotiation, computational 

economies, and so on, that form the 

foundation for multi-agent systems 

development [6]. 

 
Agents as Rational Systems 
An obvious problem is how to conceptualize 

systems that are capable of rational behaviour 

of the type discussed above. One of the most 

successful solutions to this problem involves 

viewing agents as intentional systems [10], 

whose behaviour can be predicted and 

explained in terms of attitudes such as belief, 

desire, and intention [47]. The rationale for 

this approach is that in everyday life, we use a 

folk psychology to explain and predict the 

behaviour of complex intelligent systems: 

people. For example, we use statements such 
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as Michael intends to write a paper in order to 

explain Michael’s behaviour. Once told this 

statement, we expect to find Michael shelving 

other commitments and developing a plan to 

write the paper; we would expect him to 

spend a lot of time at his computer; we would 

not be surprised to find him in a grumpy 

mood; but we would be surprised to find him 

at a late night party. 

This intentional stance, whereby the 

behaviour of a complex system is understood 

via the attribution of attitudes such as 

believing and desiring, is simply an 

abstraction tool. It is a convenient shorthand 

for talking about complex systems, which 

allows us to succinctly predict and explain 

their behaviour without having to understand 

how they actually work. Now, much of 

computer science is concerned with looking 

for good abstraction mechanisms, since these 

allow system developers to manage 

complexity with greater ease: witness 

procedural abstrac- tion, abstract data types, 

and most recently, objects. So, why not use 

the intentional stance as an abstraction tool in 

computing — to explain, understand, and, 

crucially, program complex computer 

systems? 

For many researchers in AI, this idea of 

programming computer systems in terms of 

‘men- talistic’ notions such as belief, desire, 

and intention is the key component of agent-

based com- puting. The concept was 

articulated most clearly by Yoav Shoham, in 

his agent-oriented pro- gramming (AOP) 

proposal [57]. There seem to be a number of 

arguments in favour of AOP. First, it offers us 

a familiar, non-technical way to talk about 

complex systems. We need no formal training 

to understand mentalistic talk: it is part of our 

everyday linguistic ability. 

Secondly, AOP may be regarded as a kind of 

‘post-declarative’ programming. In procedu- 

ral programming, saying what a system 

should do involves stating precisely how to do 

it, by writing a detailed algorithm. Procedural 

programming is difficult because it is hard for 

people to think in terms of the detail required. 

In declarative programming (a` la PROLOG), 

the aim is to reduce the emphasis on control 

aspects: we state a goal that we want the 

system to achieve, and let a built-in control 

mechanism (e.g., goal-directed refutation 

theorem proving) figure out what to do in 

order to achieve it. However, in order to 

successfully write efficient or large programs 

in a language like PROLOG, it is necessary 

for the programmer to have a detailed un- 

derstanding of how the built-in control 

mechanism works. This conflicts with one of 

the main goals of declarative programming: to 

relieve the user of the need to deal with 

control issues. In AOP, the idea is that, as in 

declarative programming, we state our goals, 

and let the built-in control mechanism figure 

out what to do in order to achieve them. In 

this case, however, the control mechanism 

implements some model of rational agency 

(such as the Cohen-Levesque theory of 

intention [9], or the Rao-Georgeff BDI model 

[47]). Hopefully, this computational 

model corresponds to our own intuitive 

understanding of (say) beliefs and desires, and 

so we need no special training to use it. 

Returning to the example we used above, 

suppose we told our autopilot agent to land at 

LAX airport. Then we would expect the agent 

to continue to attempt to land at LAX until it 

had succeeded, or else it discovered that this 

goal was impossible. We would not expect 

the agent to accept any other goal that was not 

consistent with landing at LAX, and we 

would expect the agent to continue attempting 

different strategies for achieving the goal in 

the event of difficulties. Ideally, as AOP 

programmers, we would not be concerned 

with how the agent achieves its goals. The 

reality, as ever, does not quite live up to the 

ideal. 

Interestingly, we again find that researchers 

from a more mainstream computing discipline 

have adopted a similar set of ideas. In 

theoretical computer science, logics of 

knowledge are used to reason about 

distributed systems [13]. The idea is that 

when specifying such systems, one often 

makes use of statements such as the 

following: 
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This kind of statement may be 

formalised using a logic of knowledge. 

Although most work on knowledge 

theory in distributed systems has been 

rather abstract, and unconnected with 

software practice, researchers have 

recently begun to pay serious attention 

to the possibility of directly 

programming systems using statements 

such as (1), above [13, pp233–271]. 

The idea is very close to AOP. 

Now that we understand what an 

agent is, we can begin to look at 

software engineering for agent-based 

systems. 

 
Specification 

The software development process begins by 

establishing the client’s requirements. When 

this process is complete, a specification is 

developed, which sets out the functionality of 

the new system. The purpose of this section is 

to consider what a specification for an agent-

based system might look like. What are the 

requirements for an agent specification 

framework? What sort of properties must it be 

capable of representing? To answer this 

question, we return to the properties of agents, 

as discussed in the preceding section. 

We observed above that agents are situated in 

an environment, and are able to perceive this 

environment through sensors of some kind. 

Agents thus have information about their 

envi- ronment. This leads to our first 

requirement: that the agent specification 

framework must be capable of representing 

both the state of the environment itself, and 

the information an agent has about the 

environment. It is worth making some 

comments about what properties this infor- 

mation might have. First, the information an 

agent has may be incorrect. The agent’s 

sensors may be faulty, the information might 

be out of date, or the agent may have been 

deliberately or accidentally given false 

information. Secondly, the information an 

agent has is not directly available to other 

agents: agents do not share data structures, 

and do not have access to the private data 

structures of other agents (this is part of what 

we meant by autonomy). Third, the 

environment will contain other agents, each 

with their own information about the 

environment. Thus an agent may have 

information about the state of other agents: we 

may need to represent such ‘nested’ 

information. Note that it is common practice 

to refer to the information available to an agent 

as that agent’s beliefs. 

Now consider the notion of reactivity. 

Software systems may be broadly divided into 

two types: functional and reactive [45]. A 

functional system is one that simply takes 

some in- put, performs some computation 

over this input, and eventually produces some 

output. Such systems may be viewed as 

functions f : I ! O from a set I of inputs to O 

of outputs. The classic example of such a 

system is a compiler, which can be viewed as 

a mapping from a set I of legal source 

programs to a set O of corresponding object 

or machine code programs. Although the 

internal complexity of the mapping may be 

great (e.g., in the case of a really complex 

programming language), it is nevertheless the 

case that functional programs are, in general, 

inherently simpler to specify, design, and 

implement than reactive systems. Because 

functional systems terminate, it is possible to 

use pre- and post-condition formalisms in 

order to reason about them [24]. In contrast, 

reactive systems do not terminate, but rather 

maintain an ongoing interaction with their 

environment. It is therefore not possible to use 

pre- and post- condition formalisms such as 

Hoare logic to reason about them. Instead, 

reactive systems must be specified in terms of 

their ongoing behaviour. The next 

requirement for our agent specifi- cation 

framework is that it must be capable of 

representing this inherently reactive nature of 

agents and multi-agent systems. Note that one 

of the most successful formalisms developed 

for specifying reactive systems is temporal 

logic. The idea is that when specifying a 

reactive system, one often wants to state 

requirements such as ‘if a request is received, 

then a response is eventually sent’. Such 
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requirements are easily and elegantly 

expressed in temporal logic. 

The third aspect of agents as discussed 

above is pro-activeness, by which we mean 

that 

agents are able to exhibit goal-directed 

behaviour. (Note that we use the term ‘goal’ 

fairly loosely. We include such notions as 

commitments or obligations in our usage.) It 

does not follow that in order to exhibit goal-

directed behaviour, an agent must explicitly 

generate and represent goals [38], although 

this is by far the most common approach. Our 

agent specification framework must be capable 

of representing these conative (goal-directed) 

aspects of agency. 

Finally, our agents are able to act. Agents do 

not typically have complete control over their 

environment (our auto-pilot cannot control the 

weather), but they are generally able to 

influence their environment by performing 

actions, and may have reliable control over 

portions of it. We require some way of 

representing these actions within our 

specification framework. To summarize, an 

agent specification framework must be 

capable of capturing at least the following 

aspects of an agent-based system: 

   the beliefs agents have; 

   the ongoing interaction agents have with 

their environment; 

   the goals that agent will try to achieve; 

   the actions that agents perform and the 

effects of these actions. 

What sort of specification framework is 

capable of representing such aspects of a 

system? The most successful approach 

appears to be the use of a temporal modal 

logic [7] (space restric- tions prevent a 

detailed technical discussion on such logics 

— see, e.g., [66] for a detailed overview and 

extensive references). A typical temporal 

modal agent specification framework will 

contain: 

   normal modal logic connectives for 

representing agent’s beliefs; 

   temporal logic connectives for representing 

the dynamics of the system — its ongoing 

behaviour; 

 

   normal modal logic connectives for 

representing conatives (e.g., desires, 

intentions, obli- gations); 

   some apparatus for representing the actions 

that agents perform. 

Given these requirements, there are a great 

many dimensions along which an agent 

specification framework may vary: some of 

these dimensions are summarized in Table 1. 

Note that there is by no means any consensus 

on the desirable properties of what we might 

call an ‘agent theory’. For example, two of 

the best known agent theories are the Cohen-

Levesque theory of intention [9], and the Rao-

Georgeff belief-desire-intention model [47]. 

The Cohen-Levesque model takes as 

primitive just two attitudes: beliefs and goals. 

Other attitudes (in particular, the notion of 

intention) are built up from these. In contrast, 

Rao-Georgeff take intentions as primitives, in 

addition to beliefs and goals. Also, Cohen-

Levesque adopt a linear temporal model, (and 

state a number of objections to branching 

temporal models), whereas branching time is 

more or less essential to the Rao-Georgeff 

model. As a result, the two formalisms, 

though closely related, are irreconcilable. 

The key technical problem faced by agent 

theorists is developing a model that gives a 

good account of the interrelationships 

between the various attitudes that together 

comprise an agents internal state. Some 

contemporary models are reviewed in [66]. 

 
Case Study: The Belief-Desire-Intention 

Model 

One of the most successful agent theories is 

the belief-desire-intention (BDI) model of 

Rao and Georgeff (see [47] for extensive 

references). The technical details of BDI are 

somewhat involved, and so here, we shall 

simply summarize the main concepts that 

underpin BDI models. 
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As the name suggests, the internal state of a 

BDI agent is comprised of three key data 

struc- tures, which are intended to loosely 

correspond to beliefs, desires, and intentions. 

An agent’s beliefs are intended to represent 

the information it has about the world, as we 

suggested above. Beliefs will typically be 

represented symbolically: in the Procedural 

Reasoning System (PRS) 

— the best-known BDI implementation — 

beliefs look very much like PROLOG facts 

[18]. An agent’s desires may be thought of as 

the tasks allocated to it. An agent may not in 

fact be able to achieve all of its desires, and 

in humans, desires may even be inconsistent. 

An agent’s intentions represent desires that it 

has committed to achieving. The intuition is 

that as agents will not, in general, be able to 

achieve all their desires, even if these desires 

are consistent, they must therefore fix upon 

some subset of available desires and commit 

resources to achieving them. Chosen desires 

are intentions. These intentions will then 

feedback into future decision making: for 

example, an agent should not in future adopt 

intentions that conflict with those it currently 

holds. 

The BDI model of agency has been 

formalised by Rao and Georgeff in a family 

of BDI logics [48, 51]. These logics are 

extensions to the expressive branching time 

logic CTL
 [11], which also contain normal 

modal connectives for representing beliefs, 

desires, and intentions. Most work on BDI 

logics has focussed on possible relationships 

between the three ‘mental states’ [48], and 

more recently, on developing proof methods 

for restricted forms of the log- ics [51]. 

 
Discussion 
Specification languages for agent-based 

systems are an order of magnitude more 
complex than the comparatively simple 

temporal and modal languages that have 

become commonplace in mainstream 

computer science. Typically, they are 

temporal logics enriched by a family of ad- 

ditional modal connectives, for representing 

the ‘mental state’ of an agent. There are a 

number of problems with such languages, in 

addition their conceptual complexity. The 

most worry- ing of these is with respect to 

their semantics. While the temporal 

component of these logics tends to be rather 

standard, the semantics for the additional 

modal connectives are given in the normal 

modal logic tradition of possible worlds [7]. 

So, for example, an agent’s beliefs in some 

state are characterised by a set of different 

states, each of which represents one pos- 

sibility for how the world could actually be, 

given the information available to the agent. 

In much the same way, an agents desires in 

some state are characterised by a set of states 

that are consistent with the agents desires. 

Intentions are represented similarly. There are 

several advantages to the possible worlds 

model: it is well-studied and well-understood, 

and the asso- ciated mathematics (known as 

correspondence theory) is extremely elegant. 

These attractive features make possible 

worlds the semantics of choice for almost 

every researcher in formal agent theory. 

However, there are also a number of serious 

drawbacks to possible worlds seman- tics. 

First, possible worlds semantics imply that 

agents are logically perfect reasoners, (in that 

their deductive capabilities are sound and 

complete), and they have infinite resources 

available for reasoning. No real agent, 

artificial or otherwise, has these properties. 

Secondly, possible worlds semantics are 

generally ungrounded. That is, there is 

usually no precise relationship between the 

abstract accessibility relations that are used to 

characterize an agents state, and any concrete 

computational model. As we shall see in later 

sections, this makes it is difficult to go from a 

formal specification of a system in terms of 

beliefs, desires, and so on, to a concrete 

computational system. Similarly, given a 

concrete computational system, there is 

generally no way to determine what the 

beliefs, desires, and intentions of that 
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system are. If temporal modal logics of the 

type discussed above are to be taken 

seriously as 

specification languages, then this problem is 

significant. 

 
1 Implementation 

Specification is not the end of the story 

in software development. Once given a 

specification, we must implement a 

system that is correct with respect to 

this specification. The next issue we 

consider is this move from abstract 

specification to concrete computational 

model. There are at least three 

possibilities for achieving this 

transformation: 
 

1. manually refine the specification 

into an executable form via some 

principled but infor- mal 

refinement process (as is the 

norm in most current software 

development); 

2. somehow directly execute or 
animate the abstract specification; or 

3. somehow translate or compile the 

specification into a concrete 

computational form using an 

automatic translation technique. 

 

In the sub-sections that follow, we shall 

investigate each of these possibilities in 

turn. 

 
1.1 Refinement 

At the time of writing, most software 

developers use structured but informal 

techniques to transform specifications into 

concrete implementations. Probably the most 

common techniques in widespread use are 

based on the idea of top-down refinement. In 

this approach, an abstract system specification 

is refined into a number of smaller, less 

abstract sub-system specifications, which 

together satisfy the original specification. If 

these sub-systems are still too abstract to be 

implemented directly, then they are also 

refined. The process recurses until the derived 

sub-systems are simple enough to be directly 

implemented. Throughout, we are obliged to 

demonstrate that each step represents a true 

refinement of the more abstract specification 

that preceded it. This demonstration may take 

the form of a formal proof, if our specification 

is presented in, say, Z [60] or VDM [29]. More 

usually, justification is by informal argument. 

For functional systems, the refinement process 

is well understood, and comparatively straight- 

forward. Refinement calculi exist, which 

enable the system developer to take a pre- and 

post- condition specification, and from it 

systematically derive an implementation 

through the use of proof rules [43]. Part of 

this reason for this comparative simplicity is 

that there is often an easily understandable 

relationship between the pre- and post-

conditions that characterize an operation and 

the program structures required to implement 

it. 

For reactive systems, refinement is not so 

straightforward. This is because reactive 

systems must be specified in terms of their 

ongoing behaviour. In contrast to pre- and 

post-condition formalisms, it is not so easy to 

determine what program structures are 

required to realise such specifications. The 

refinement problem for agent-based systems, 

where specifications may be regarded as even 

more abstract than those for reactive systems, 

is harder still. As a conse- quence, researchers 

have only just begun to investigate the 

refinement of agent-based systems. In the 

subsections that follow, we shall review two 

examples of this work. 
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Case Study: Agents in Z 

Luck and d’Inverno have developed an agent 

specification framework in the Z language, al- 

though, as we shall see, the types of agents 

considered in this framework are somewhat 

dif- ferent from those discussed above [36]. 

They define a four-tiered hierarchy of the 

entities that can exist in an agent-based 

system. They start with entities, which are 

inanimate objects — they have attributes 

(colour, weight, position), but nothing else. 

They then define objects to be entities that 

have capabilities (e.g., tables are entities that 

are capable of supporting things). Agents are 

then defined to be objects that have goals, and 

are thus in some sense active; finally, 

autonomous agents are defined to be agents 

with motivations. The idea is that a chair 

could be viewed as taking on my goal of 

supporting me when I am using it, and can 

hence be viewed as an agent for me. But we 

would not view a chair as an autonomous 

agent, since it has no mo- tivations (and 

cannot easily be attributed them). Starting 

from this basic framework, Luck and 

d’Inverno go on to examine the various 

relationships that might exist between agents 

of differ- ent types. In [37], they examine how 

an agent-based system specified in their 

framework might be implemented. They 

found that there was a natural relationship 

between their hierarchical agent specification 

framework and object-oriented systems: 

 

‘The formal definitions of agents and 

autonomous agents rely on inheriting the 

properties of lower-level components. In the 

Z notation, this is achieved through schema 

inclusion [. . . ]. This is easily modelled in 

¡C++ by deriving one class from another. [. . . 

] Thus we move from a principled but abstract 

theoretical framework through a more 

detailed, yet still formal, model of the system, 

down to an object- oriented implementation, 

preserving the hierarchical structure at each 

stage.’ [37] 

 

The Luck-d’Inverno formalism is attractive, 

particularly in the way that it captures the 

relation- ships that can exist between agents. 

The emphasis is placed on the notion of 

agents acting for another, rather than on 

agents as rational systems, as we discussed 

above. The types of agents that the approach 

allows us to develop are thus inherently 

different from the ‘rational’ agents discussed 

above. So, for example, the approach does not 

help us to construct agents that can interleave 

pro-active and reactive behaviour. This is 

largely a result of the chosen specification 

language: Z. This language is inherently 

geared towards the specification of operation-

based, functional systems. The basic language 

has no mechanisms that allow us to easily 

specify the ongoing behaviour of an agent-

based system3. 

 
Case Study: A Methodology for BDI 

Agents 

In section 3, we noted that the belief-desire-

intention (BDI) model is one of the most 
successful general frameworks for agency. In 

[32], Kinny et al propose a four-stage design 

methodology for systems of BDI agents. The 

methodology is closely linked to a specific 

realization of the BDI model: the PRS 

architecture [18]. The methodology may be 

summarized as follows: 
 

Identify the relevant roles in the application 

domain, and on the basis of these, develop an 

agent class hierarchy. An example role might 

be weather monitor, whereby agent i is 

required to make agent j aware of the 

prevailing weather conditions every hour. 

Identify the responsibilities associated with 

each role, the services required by and pro- 

vided by the role, and then determine the goals 

associated with each service. With respect to 

the above example, the goals would be to find 

out the current weather, and to make agent j 

aware of this information. 

For each goal, determine the plans that may 

be used to achieve it, and the context con- 

ditions under which each plan is appropriate. 

With respect to the above example, a plan for 

the goal of making agent j aware of the 

weather conditions might involve sending a 

message to j. 

Determine the belief structure of the system 
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— the information requirements for each plan 

and goal. With respect to the above example, 

we might propose a unary predicate 

windspeed(x) to represent the fact that the 

current wind speed is x. A plan to determine 

the current weather conditions would need to 

be able to represent this information. 
 

Note that the analysis process will be 

iterative, as in more traditional 

methodologies. The outcome will be a model 

that closely corresponds to the PRS agent 

architecture. As a result, the move from end-

design to implementation using PRS is 

relatively simple. 

Kinny et al illustrate their methodology by 

applying it to an implemented air traffic man- 

agement system called OASIS. This system, 

currently being deployed at Sidney airport in 

Aus- tralia, is, by any measure, a large and 

difficult application. It is arguably the most 

significant agent application yet developed. 

That the agent approach has been successfully 

applied in this domain is encouraging; the use 

of the methodology even more so. 

 
Directly Executing Agent 

Specifications 
One major disadvantage with manual 

refinement methods is that they introduce the 

possibility of error. If no proofs are provided, 

to demonstrate that each refinement step is 

indeed a true refinement, then the correctness 

of the implementation process depends upon 

little more than the intuitions of the 

developer. This is clearly an undesirable state 

of affairs for applications in which 

correctness is a major issue. One possible way 

of circumventing this problem, that has been 

widely investigated in mainstream computer 

science, is to get rid of the refinement process 

altogether, and directly execute the 

specification. 

It might seem that suggesting the direct 

execution of complex agent specification 

languages is naive. (It is exactly the kind of 

suggestion that detractors of symbolic AI 

hate.) One should be therefore be very careful 

about what claims or proposals one makes. 

However, in certain circumstances, the direct 

execution of agent specification languages is 

possible. 

What does it mean, to execute a formula ' of 

logic L? It means generating a logical model, 

M, for ', such that M j= '  [15]. If this could 

done without interference from the 

environment 

— if the agent had complete control over its 

environment — then execution would reduce 

to constructive theorem proving, where we 

show that '  is satisfiable by building a model 

for '. In reality of course, agents are not 

interference-free: they must iteratively 

construct a model in the presence of input 

from the environment. Execution can then be 

seen as a two-way iterative process: 

 

   environment makes something true; 

   agent responds by doing something, 

i.e., making something else true in the 

model; 

  environment responds, making 
something else true; 

   . . . 
 

Execution of logical languages and theorem 

proving are thus closely related. This tells us 

that the execution of sufficiently rich 

(quantified) languages is not possible (since 

any language equal in expressive power to 

first-order logic is undecidable). 

A useful way to think about execution is as if 

the agent is playing a game against the 

environment. The specification represents the 

goal of the game: the agent must keep the 

goal satisfied, while the environment tries to 

prevent the agent doing so. The game is 

played by agent and environment taking it in 

turns to build a little more of the model. If the 

specification ever becomes false in the 

(partial) model, then the agent loses. In real 

reactive systems, the game is never over: the 

agent must continue to play forever. Of 

course, some specifications (logically 

inconsistent ones) cannot ever be satisfied. A 

winning strategy for building models from 

(satisfiable) agent specifications in the 
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presence of arbitrary input from the 

environment is an execution algorithm for the 

logic. 

 

Case Study: Concurrent METATEM 

Concurrent METATEM is a programming 

language for multi-agent systems, that is 

based on the idea of directly executing linear 

time temporal logic agent specifications [16, 

14]. A Con- current METATEM system 

contains a number of concurrently executing 

agents, each of which 

is programmed by giving it a temporal logic 

specification of the behaviour it is intended 

the agent should exhibit. An agent 

specification has the form 
V

i Pi ) Fi, where 

Pi is a temporal 

logic formula referring only to the present or 

past, and Fi is a temporal logic formula 

referring 

to the present or future. The Pi ) Fi formulae 

are known as rules. The basic idea for 

executing such a specification may be 

summed up in the following slogan: 
 

on the basis of the past do the future. 
 

Thus each rule is continually matched against 

an internal, recorded history, and if a match is 

found, then the rule fires. If a rule fires, then 

any variables in the future time part are 

instan- tiated, and the future time part then 

becomes a commitment that the agent will 

subsequently attempt to satisfy. Satisfying a 

commitment typically means making some 

predicate true within the agent. Here is a 

simple example of a Concurrent METATEM 

agent definition: 
 

 ask(x) ) give(x) 

(:ask(x) Z (give(x) ̂  :ask(x)) ) :give(x) 

give(x) ̂  give(y) ) (x = y) 

The agent in this example is a controller for a 

resource that is infinitely renewable, but 

which may only be possessed by one agent at 

any given time. The controller must therefore 

enforce mutual exclusion. The predicate 

ask(x) means that agent x has asked for the 

resource. The predicate give(x) means that the 

resource controller has given the resource to 

agent x. The resource controller is assumed to 

be the only agent able to ‘give’ the resource. 

However, many agents may ask for the 

resource simultaneously. The three rules that 

define this agent’s behaviour may be 

summarized as follows: 

Rule 1: if someone asks, then eventually give; 

Rule 2: don’t give unless someone has asked 

since you last gave; and 

Rule 3: if you give to two people, then they 

must be the same person (i.e., don’t give to 

more than one person at a time). 

Note that Concurrent METATEM agents can 

communicate by asynchronous broadcast 

message passing, though the details are not 

important here. 

 
1.2 Compiling Agent 

Specifications 
An alternative to direct execution is 

compilation. In this scheme, we take our 

abstract spec- ification, and transform it into a 

concrete computational model via some 

automatic synthesis process. The main 

perceived advantages of compilation over 

direct execution are in run-time efficiency. 

Direct execution of an agent specification, as in 

Concurrent METATEM, above, typi- cally 

involves manipulating a symbolic 

representation of the specification at run time. 

This ma- nipulation generally corresponds to 

reasoning of some form, which is 

computationally costly (and in many cases, 

simply impracticable for systems that must 

operate in anything like real time). In contrast, 

compilation approaches aim to reduce abstract 

symbolic specifications to a much simpler 

computational model, which requires no 

symbolic representation. The ‘reason- ing’ 

work is thus done off-line, at compile-time; 

execution of the compiled system can then be 

done with little or no run-time symbolic 

reasoning. As a result, execution is much 

faster. The advantages of compilation over 

direct execution are thus those of compilation 

over interpreta- tion in mainstream 

programming. 

Compilation approaches usually depend upon 

the close relationship between models for 
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temporal/modal logic (which are typically 

labeled graphs of some kind), and automata-

like finite  state  machines.   Crudely,  the  idea  

is  to  take  a  specification ',  and  do  a  

constructive proof  of the implementability of 

', wherein we show that the specification is 

satisfiable by systematically attempting to 

build a model for it. If the construction 

process succeeds, then the specification is 

satisfiable, and we have a model to prove it. 

Otherwise, the specification is unsatisfiable. If 

we have a model, then we ‘read off’ the 

automaton that implements ' from its 

corresponding model. The most common 

approach to constructive proof is the 

semantic tableaux method of Smullyan [59]. 

In mainstream computer science, the 

compilation approach to automatic program 

synthesis has been investigated by a number of 

researchers. Perhaps the closest to our view is 

the work of Pnueli and Rosner [46] on the 

automatic synthesis of reactive systems from 

branching time temporal logic specifications. 

The goal of their work is to generate reactive 

systems, which share many of the properties 

of our agents (the main difference being that 

reactive systems are not generally required to 

be capable of rational decision making in the 

way we described above). To do this, they 

specify a reactive system in terms of a first-

order branching time tem- poral logic formula 

8x  9y  A  '(x; y):  the predicate '  

characterises the relationship between inputs 

to the system (x) and outputs (y). Inputs may 

be thought of as sequences of environment 

states, and outputs as corresponding 

sequences of actions. The A is a branching 

time temporal logic connective meaning ‘on 

all paths’, or ‘in all possible futures’. The 

specification is in- tended to express the fact 

that in all possible futures, the desired 

relationship ' holds between the inputs to the 

system, x, and its outputs, y. The synthesis 

process itself is rather complex: it involves 

generating a Rabin tree automaton, and then 

checking this automaton for emptiness. Pnueli 

and Rosner show that the time complexity of 

the synthesis process is double exponential 

in the size of the specification, i.e., O(22
c:n 

), 

where c is a constant and n = j 

j is the size of the 

specification '. The size of the synthesized 

program (the number of states it contains) is of 

the same complexity. 

The Pnueli-Rosner technique is rather similar 

to (and in fact depends upon) techniques de- 

veloped by Wolper, Vardi, and colleagues for 

synthesizing Büchi automata from linear 

temporal logic specifications [61].  Büchi 

automata are those that can recognise !-

regular expressions: regular expressions that 

may contain infinite repetition. A standard 

result in temporal logic theory is that a 

formula ' of linear time temporal logic is 

satisfiable if and only if there exists a Büchi 

automaton that accepts just the sequences 

that satisfy '.  Intuitively, this is because the 

sequences over which linear time temporal 

logic is interpreted can be viewed as !-

regular expressions. This result yields a 

decision procedure for linear time temporal 

logic: to deter- mine whether a formula ' is 

satisfiable, construct an automaton that 

accepts just the (infinite) sequences that 

correspond to models of  ';  if the set of 

such sequences is empty, then '  is 

unsatisfiable. The technique for constructing 

an automaton from the corresponding formula 

is closely based on Wolper’s tableau proof 

method for temporal logic [62]. 

Similar automatic synthesis techniques have 

also been deployed to develop concurrent sys- 

tem skeletons from temporal logic 

specifications. Manna and Wolper present an 

algorithm that takes as input a linear time 

temporal logic specification of the 

synchronization part of a concurrent system, 

and generates as output a CSP program 

skeleton ([25]) that realizes the specification 

[41]. The idea is that the functionality of a 

concurrent system can generally be divided 

into two parts: a functional part, which 

actually performs the required computation in 

the program, and a synchronization part, 

which ensures that the system components 

cooperate in the correct way. For example, the 

synchronization part will be responsible for 

any mutual exclusion that is required.   The 

synthesis algorithm, (like the synthesis 

algorithm  for Büchi automata, above), is 

' 
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based on Wolper’s tableau proof method for 

temporal logic [62]. Very similar work is 

reported by Clarke and Emerson [8]: they 

synthesize synchronization skeletons from 

branching time temporal logic (CTL) 

specifications. 

 
Case Study: Situated Automata 

Perhaps the best-known example of this 

approach to agent development is the situated 

au- tomata paradigm of Rosenschein and 

Kaelbling [52, 31]. In this approach, an agent 

has two main components: 
 

   a perception part, which is responsible for 

observing the environment, and updating the 

internal state of the agent; and 

   an action part, which is responsible for 

deciding what action to perform, based on 

the internal state of the agent. 
 

Rosenschein and Kaelbling developed two 

programs to support the development of the 

percep- tion and action components of an 

agent respectively. The RULER program takes 

a declarative perception specification and 

compiles it down to a finite state machine. 

The specification is given in terms of a theory 

of knowledge. The semantics of knowledge in 

the declarative speci- fication language are 

given in terms of possible worlds, in the way 

described above. Crucially, however, the 

possible worlds underlying this logic are 

given a precise computational interpre- tation, 

in terms of the states of a finite state machine. 

It is this precise relationship that permits the 

synthesis process to take place. 
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The action part of an agent in Rosenschein and 

Kaelbling’s framework is specified in terms of 

goal reduction rules, which encode 

information about how to achieve goals. The 

GAPPS program takes as input a goal 

specification, and a set of goal reduction 

rules, and generates as output a set of situation 

action rules, which may be thought of as a 

lookup table, defining what the agent should 

do under various circumstances, in order to 

achieve the goal. The process of deciding 

what to do is then very simple in 

computational terms, involving no reasoning 

at all. (A similar technique, called universal 

plans, was developed by Schoppers [54].) 

 
1.3 Discussion 

Structured but informal refinement techniques 

are the mainstay of real-world software engi- 

neering. If agent-oriented techniques are ever 

to become widely used outside the academic 

community, then informal, structured 

methods for agent-based development will be 

essential. One possibility for such techniques, 

followed by Luck and d’Inverno, is to use a 

standard spec- ification technique (in their 

case, Z), and use traditional refinement 

methods (in their case, object-oriented 

development) to transform the specification 

into an implementation. This ap- proach has 

the advantage of being familiar to a much 

larger user-base than entirely new tech- 

niques, but suffers from the disadvantage of 

presenting the user with no features that make 

it particularly well-suited to agent 

specification. It seems certain that there will 

be much more work on manual refinement 

techniques for agent-based systems in the 

immediate future, but exactly what form these 

techniques will take is not clear. 

Now consider the possibility of directly 

executing agent specifications. A number of 
prob- lems immediately suggest themselves. 

The first is that of finding a concrete 

computational interpretation for the agent 

specification language in question. To see 

what we mean by this, consider models for the 

agent specification language in Concurrent 

METATEM. These are very simple: essentially 

just linear discrete sequences of states. 

Temporal logic is (amongst other things) 

simply a language for expressing constraints 

that must hold between successive states. 

Execution in Concurrent METATEM is thus a 

process of generating constraints as past-time 

antecedents are satisfied, and then trying to 

build a next state that satisfies these 

constraints. Constraints are expressed in 

temporal logic, which implies that they may 

only be in certain, regular forms. Because of 

this, it is possible to devise an algorithm that 

is guaranteed to build a next state if it is 

possible to do so. Such an algorithm is 

described in [3]. 

The agent specification language upon which 

Concurrent METATEM is based thus has a 

concrete computational model, and a 

comparatively simple execution algorithm. 

Contrast this state of affairs with the kinds of 

temporal modal agent specification languages 

discussed in section 3, where we have not 

only a temporal dimension to the logic, but 

also modalities for referring to beliefs, 

desires, and so on. In general, these models 

have ungrounded semantics. That is, the 

semantic structures that underpin these logics 

(typically accessibility relations for each of 

the modal operators) have no concrete 

computational interpretation. As a result, it is 

not clear how such agent specification 

languages might be executed. 

Another obvious problem is that execution 

techniques based on theorem proving are 

inher- ently limited when applied to sufficiently 

expressive (first-order) languages, as first-

order logic is undecidable. However, 

complexity is a problem even in the 

propositional case. For ‘vanilla’ propositional 

logic, the decision problem for satisfiability is 

NP-complete [13, p72]; for linear temporal 

logic, the problem is PSPACE-complete [58]; 

for simple modal logics of knowledge, the 

problem is NP-complete, and for more 

complex modal logics of knowledge, the 

problem is EXPTIME-complete [13, p73]; for 

logics that combine temporal and (S5) modal 

aspects, the de- 
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cision problem varies from PSPACE-complete 

in the simplest case to  1-complete, (and 

hence undecidable) in the propositional case, 

depending on what semantic assumptions are 

made [13, p289]. 

Turning to automatic synthesis, we find that 

the techniques described above have been 

developed primarily for propositional 

specification languages. If we attempt to 

extend these techniques to more expressive, 

first-order specification languages, then we 

again find ourselves coming up against the 

undecidability of quantified logic. Even in the 

propositional case, the theoretical complexity 

of theorem proving for modal and temporal 

logics is likely to limit the effectiveness of 

compilation techniques: given an agent 

specification of size 1000, a synthesis 

algorithm that runs in exponential time when 

used off-line is no more useful than an 

execution algorithm which runs in exponential 

time on-line. 

Another problem with respect to synthesis 

techniques is that they typically result in 

finite- state, automata like machines, that are 

strictly less powerful than Turing machines. 

In partic- ular, the systems generated by the 

processes outlined above cannot modify their 

behaviour at run-time. In short, they cannot 

learn. While for many applications, this is 

acceptable — even desirable — for equally 

many others, it is not. In expert assistant 

agents, of the type described in [39], learning 

is pretty much the raison d’etre. Attempts to 

address this issue are described in [30]. 

 
2 Verification 

Once we have developed a concrete 

system, we need to show that this 

system is correct with respect to our 

original specification. This process is 

known as verification, and it is 

particularly important if we have 

introduced any informality into the 

development process. For example, any 

manual refinement, done without a 

formal proof of refinement correctness, 

creates the possibility of a faulty 

transformation from specification to 

implementation. Verification is the 

process of convincing ourselves that the 

transformation was sound. We can 

divide approaches to the verification of 

systems into two broad classes: (1) 

axiomatic; and (2) semantic (model 

checking). In the subsections that 

follow, we shall look at the way in 

which these two ap- proaches have 

evidenced themselves in agent-based 

systems. 

 
2.1 Axiomatic Approaches 

Axiomatic approaches to program verification 

were the first to enter the mainstream of com- 

puter science, with the work of Hoare in the 

late 1960s [24]. Axiomatic verification 

requires that we can take our concrete 

program, and from this program 

systematically derive a logi- cal theory that 

represents the behaviour of the program. Call 

this the program theory. If the program theory 

is expressed in the same logical language as the 
original specification, then ver- ification 

reduces to a proof problem: show that the 

specification is a theorem of (equivalently, is a 

logical consequence of) the program theory. 

The development of a program theory is 

made feasible by axiomatizing the 

programming language in which the system 

is implemented. For example, Hoare logic 

gives us more or less an axiom for every 

statement type in a simple PASCAL-like 

language. Once given the axiomatization, the 

program theory can be derived from the 

program text in a systematic way. Perhaps the 

most relevant work from mainstream 

computer science is the specification and 

verification of reactive systems using 

temporal logic, in the way pioneered by 

Pnueli, Manna, 
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and colleagues [40]. The idea is that the 

computations of reactive systems are infinite 

se- quences, which correspond to models for 

linear temporal logic
4
. Temporal logic can be 

used both to develop a system specification, 

and to axiomatize a programming language. 

This ax- iomatization can then be used to 

systematically derive the theory of a program 

from the program text. Both the specification 

and the program theory will then be encoded 

in temporal logic, and verification hence 

becomes a proof problem in temporal logic. 

Comparatively little work has been carried out 

within the agent-based systems community on 

axiomatizing multi-agent environments. We 

shall review just one approach. 

 
Case Study: Axiomatizing two Multi-

Agent Languages 

In [63], an axiomatic approach to the 

verification of multi-agent systems was 

proposed. Es- sentially, the idea was to use a 

temporal belief logic to axiomatize the 

properties of two multi- agent programming 

languages. Given such an axiomatization, a 

program theory representing the properties of 

the system could be systematically derived in 

the way indicated above. 

A temporal belief logic was used for two 

reasons. First, a temporal component was 

required because, as we observed above, we 

need to capture the ongoing behaviour of a 

multi-agent system. A belief component was 

used because the agents we wish to verify are 

each symbolic AI systems in their own right. 

That is, each agent is a symbolic reasoning 

system, which includes a representation of its 

environment and desired behaviour. A belief 

component in the logic allows us to capture the 

symbolic representations present within each 

agent. 

The two multi-agent programming languages 

that were axiomatized in the temporal belief 

logic were Shoham’s AGENT0 [57], and 

Fisher’s Concurrent METATEM(see above). 

The basic approach was as follows: 
 

First, a simple abstract model was developed 

of symbolic AI agents. This model captures the 

fact that agents are symbolic reasoning 

systems, capable of communication. The 

model gives an account of how agents might 

change state, and what a computation of such 

a system might look like. 

The histories traced out in the execution of 

such a system were used as the semantic basis 

for a temporal belief logic. This logic allows 

us to express properties of agents modelled at 

stage (1). 

The temporal belief logic was used to 

axiomatize the properties of a multi-agent 

pro- gramming language. This axiomatization 

was then used to develop the program theory 

of a multi-agent system. 

The proof theory of the temporal belief logic 

was used to verify properties of the sys- tem 

[65]. 
 

Note that this approach relies on the operation 

of agents being sufficiently simple that their 

properties can be axiomatized in the logic. It 

works for Shoham’s AGENT0 and Fisher’s 

Con- current METATEM largely because these 

languages have a simple semantics, closely 

related to rule-based systems, which in turn 

have a simple logical semantics. For more 

complex agents, 

an axiomatization is not so 

straightforward. Also, capturing the 

semantics of concurrent exe- cution of 

agents is not easy (it is, of course, an 

area of ongoing research in computer 

science generally). 

 
Semantic Approaches: Model 

Checking 
Ultimately, axiomatic verification reduces to 

a proof problem. Axiomatic approaches to 

ver- ification are thus inherently limited by 

the difficulty of this proof problem. Proofs are 

hard enough, even in classical logic; the 

addition of temporal and modal connectives 

to a logic makes the problem considerably 

harder. For this reason, more efficient 

approaches to verifi- cation have been sought. 

One particularly successful approach is that of 

model checking. As the name suggests, 

whereas axiomatic approaches generally rely 

on syntactic proof, model checking 
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approaches are based on the semantics of the 

specification language. 

The model checking problem, in abstract, is 

quite simple: given a formula ' of language L, 

and a model M for L, determine whether or 

not '  is valid in M, i.e., whether or not M  j=L  

'. Model checking-based verification has been 

studied in connection with temporal logic 

[35]. The technique once again relies upon the 

close relationship between models for 

temporal logic and finite-state machines. 

Suppose that ' is the specification for some 

system, and is a program that claims to 

implement '. Then, to determine whether or 

not    truly implements ', we proceed as 

follows: 

 

   take   , and from it generate a model M   that 

corresponds to , in the sense that M  

encodes all the possible computations of ; 

   determine whether or not M       j= ', i.e., 

whether the specification formula '  is valid in 

M ; the program   satisfies the specification ' 

just in case the answer is ‘yes’. 

 

The main advantage of model checking over 

axiomatic verification is in complexity: model 

checking using the branching time temporal 

logic CTL ([8]) can be done in polynomial 

time (O(j'j   jMj), where j'j is the size of the 

formula to be checked, and jMj is the size of 

the model against which ' is to be checked — 

the number of states it contains)5. 

 

Case Study: Model Checking BDI 

Systems 

In [50], Rao and Georgeff present an 

algorithm for model checking AOP systems. 

More pre- cisely, they give an algorithm for 

taking a logical model for their 

(propositional) BDI agent specification 

language, and a formula of the language, and 

determining whether the formula is valid in 

the model. The technique is closely based on 

model checking algorithms for normal modal 

logics [21]. They show that despite the 

inclusion of three extra modalities, (for 

beliefs, desires, and intentions), into the CTL 

branching time framework, the algorithm is 

still quite effi- cient, running in polynomial 

time. So the second step of the two-stage 

model checking process described above can 

still be done efficiently. However, it is not 

clear how the first step might be realised for 

BDI logics. Where does the logical model 

characterizing an agent actually comes from 

— can it be derived from an arbitrary 

program , as in mainstream computer science? 

To do this, we would need to take a program 

implemented in, say, PASCAL, and from it 

derive the 

belief, desire, and intention 

accessibility relations that are used to 

give a semantics to the BDI component 

of the logic. Because, as we noted 

earlier, there is no clear relationship 

between the BDI logic and the concrete 

computational models used to 

implement agents, it is not clear how 

such a model could be derived. 

 
Discussion 

Axiomatic approaches to the verification of 

multi-agent systems suffer from two main 

prob- lems. First, the temporal verification of 

reactive systems relies upon a simple model 

of con- currency, where the actions that 

programs perform are assumed to be atomic. 

We cannot make this assumption when we 

move from programs to agents. The actions 

we think of agents as performing will 

generally be much more coarse grained. As a 

result, we need a more realistic model of 

concurrency. One possibility, investigated in 

[64], is to model agent execution cycles as 

intervals over the real numbers, in the style of 

the temporal logic of reals [4]. The second 

problem is the difficulty of the proof problem 

for agent specification languages. As we 

noted in section 3, the theoretical complexity 

of proof for many of these logics is quite 

daunting. 

With respect to model-checking approaches, 

the main problem, as we indicated above, is 

again the issue of ungrounded semantics for 

agent specification languages. If we cannot 

take an arbitrary program and say, for this 

program, what its beliefs, desires, and 

intentions are, then it is not clear how we 
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might verify that this program satisfied a 

specification expressed in terms of such 

constructs. 

 

Conclusions 
Agent-based systems are a promising 

development, not just for AI, but for computer 

science generally. If intelligent agent 

technology succeeds, then it will provide a 

solution to many important but difficult 

software problems. The challenge now before 

the intelligent agent com- munity is to ensure 

that the techniques developed particularly over 

the past decade for building rational agents 

make a smooth transition from the research lab 

to the desk of the everyday com- puter worker. 

This is by no means easy, as the expert 

systems experience demonstrates. If the 

community is to succeed in this endeavour, 

then it will need to take very seriously the 

comment by Oren Etzioni, that opened this 

paper: agents are more a problem of computer 

science and software engineering than AI. 

In this paper, we have set out a roadmap for 

work in agent-based software engineering. We 

have examined the fundamental problems of 

specification, implementation, and 

verification from the point of view of agent-

based systems. Throughout, we have been 

careful to draw as many parallels as possible 

with more mainstream software engineering. 
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