
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

The Development of Software Using Agents

Michael Wooldridge

Mitsubishi Electric Digital Library Group

18th Floor, Centre Point, 103 New Oxford Street

London WC1A 1EB, United Kingdom

Abstract

The technology of intelligent agents and

multi-agent systems seems set to radically

alter the way in which complex, distributed,

open systems are conceptualized and imple-

mented. The purpose of this paper is to
consider the problem of building a multi-

agent system as a software engineering

enterprise. The article focuses on three issues:

(i) how agents might be specified; (ii) how

these specifications might be refined or

otherwise trans- formed into efficient

implementations; and (iii) how implemented

agents and multi-agent systems might

subsequently be verified, in order to show that

they are correct with respect to their

specifications. These issues are discussed

with reference to a number of case- studies.

The article concludes by setting out some

issues and open problems for future research.

Introduction

Over its 40-year history, Artificial

Intelligence (AI) has been subject to many

and varied crit- icisms. Perhaps the most

persistent and troubling of these is that AI has

simply failed to de- liver on its promises.

Clearly, the more extreme predictions of some

AI researchers (such as human-quality

intelligent robots within five decades) have

not been realized. This would not be so

worrying if it was obvious that AI had paid

off in some other way: if, for example, AI

techniques were standard components in

workaday software. But this is not the case.

Even comparatively mundane AI techniques

(such as rule-based systems) are still regarded

as home- opathic medicine by a significant

proportion of the mainstream computer

science community. Why is this? There are
many reasons, including, for example, the

reluctance of software de- velopers to learn

about and apply new technologies, and the

inappropriateness of mainstream software

engineering techniques and tools for AI

system development. But at least part of the

answer is also that many AI researchers either

ignore or else gloss over the pragmatic

concerns of software development, for the

simple reason that they do not regard

themselves as software

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

engineers. AI prides itself on being multi-

disciplinary, taking contributions from many

other fields; but software engineering is

generally regarded as neither a contributor nor

a concern.

The most recent infants to emerge from the AI

nursery are the notions of an intelligent agent

and agent-based system [66]. An intelligent

agent is generally regarded as an autonomous

de- cision making system, which senses and

acts in some environment (we discuss the

question of what an agent is in more detail

below). Agents appear to be a promising

approach to developing many complex

applications, ranging from INTERNET-based

electronic commerce and informa- tion

gathering to industrial process control (see

[28] for a survey). But unless researchers

recognise that agent-based systems are about

computer science and software engineering

more than they are about AI, then within a

decade, we may well be asking why agent

technology suffered the same fate as so many

other AI ideas that seemed good in principle.

In summary, the aim of this paper is to

consider the problem of building agent-based

sys- tems as a software engineering enterprise.

In so doing, the paper constructs a framework

within which future work on agent-based

software engineering may be placed. The

paper begins by motivating and introducing

the idea of agent-based systems, and then goes

on to discuss the key software engineering

issues of specification,

refinement/implementation, and verification

with respect to agent-based systems. We begin

by briefly discussing the question of what a

speci- fication is, and go on to consider what

an agent-based specification might look like.

We then discuss some of the dimensions

along which an agent-based specification

framework might vary, with particular

reference to the notion of agents as rational,

mentalistic systems [57, 49]. We subsequently

discuss the key issue of implementing or

refining agent-based specifications into

systems, and finally, we consider the

verification of agent-based systems.

Throughout the article, we take care both to

illustrate the various issues with case studies,

and to draw parallels with more mainstream

software engineering research wherever

possible. The article concludes with a

discussion of future work directions.

It should be noted that the emphasis of this

paper is on formal methods for agent-based

software engineering. This bias reflects the

current state of the field. As the area matures,

and more agent-based systems are deployed,

we will naturally see an increasing number of

structured but informal development

techniques emerge.

Agent-Based Systems
By an agent-based system, we mean one in

which the key abstraction used is that of an
agent. Agent-based systems may contain a

single agent, (as in the case of user interface

agents or software secretaries [39]), but

arguably the greatest potential lies in the

application of multi- agent systems [6]. By an

agent, we mean a system that enjoys the

following properties [66, pp116–118]:

 autonomy: agents encapsulate some state

(that is not accessible to other agents), and

make decisions about what to do based on this

state, without the direct intervention of

humans or others;

 reactivity: agents are situated in an

environment, (which may be the physical

world, a user via a graphical user interface, a

collection of other agents, the INTERNET, or

perhaps many of these combined), are able to

perceive this environment (through the use of

potentially imperfect sensors), and are able to

respond in a timely fashion to changes that

occur in it;

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

 pro-activeness: agents do not simply act in

response to their environment, they are able to

exhibit goal-directed behaviour by taking the

initiative;

 social ability: agents interact with other

agents (and possibly humans) via some kind

of agent-communication language [17], and

typically have the ability to engage in social

activities (such as cooperative problem

solving or negotiation) in order to achieve

their goals.

To more clearly understand what is meant by

these properties, consider the following

scenario. Imagine an autonomous automatic

pilot controlling an aircraft, that we present

with the goal of safely landing at some

airport. We expect the system to plan how to

achieve this goal (perhaps by making use of

pre-compiled plans, rather than reasoning from

first-principles), and if necessary, we expect it

to generate subsidiary goals (e.g., ascend to an

altitude of 30,000 feet, then proceed due north

at a speed of. . .). This is what we mean by

pro-activeness. We also expect the system to

try to execute its plans, but not blindly. Thus,

in the event of unforeseen circumstances (e.g.,

a change in weather conditions, a fault in the

aircraft, a request from air- traffic control), we

expect the system to respond to the new

situation accordingly, in time for the response

to be useful. A system that spent hours

deliberating about what to do next would be

no use as an auto-pilot. This is what we mean

by reactiveness. We also expect our auto-pilot

to be able to cooperate with air-traffic

controllers and perhaps other aircraft in order

to achieve its goals. This is what we mean by

social ability. Note that this example is

intended to be extreme: it is not a claim about

what agents can currently do, or what they

will be able to do in the near future. It is

merely intended to highlight the type of

features we ultimately hope to see in agents.

The concept of an intelligent autonomous

agent did not appear in a vacuum. It is a

natural development of various other trends in

AI and computer science. In the subsections

that follow, we discuss some ancestors of

agents, and identify the attributes that make

them distinct from their forbears.

Agents and AI

The discipline of intelligent agents has

emerged largely from research in AI. In fact,

one way of defining AI is as the problem of

building an intelligent agent (Rusell and

Norvig’s recent textbook on AI more-or-less

takes this view [53]). But it is important to

distinguish between the broad intelligence

that is the ultimate goal of the AI community,

and the intelligence we seek in agents. The

only intelligence requirement we generally

make of our agents is that they can make an

acceptable decision about what action to

perform next in their environment, in time for

this decision to be useful. Other requirements

for intelligence will be determined by the

domain in which the agent is applied: not all

agents will need to be capable of learning,

for example. Capabilities such as

commonsense reasoning (à la CYC [19]) are

not required

for many important application domains.

Thus, as we pointed out in the introduction,

we view the application and exploitation of

agent technology primarily as a computer

science problem. Agents are simply software

components that must be designed and

implemented in much the same way that other

software components are. However, AI

techniques are often the most appropriate way

of building agents.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

Agents and Expert Systems

Expert systems were the AI technology of the

1980s [23]. An expert system is one that is

capable of solving problems or giving advice

in some knowledge-rich domain [26]. A

classic example of an expert system is

MYCIN, which was intended to assist

physicians in the treatment of blood infections

in humans. Perhaps the most important

distinction between agents and expert systems

is that expert systems like MYCIN are

inherently disembodied. By this, we mean

that they do not interact directly with any

environment: they get their information not

via sensors, but through a user acting as

middle man. In addition, expert systems are

not usually required to operate in anything

like real-time. Finally, we do not generally

require expert systems to be capable of co-

operating with other agents.

Despite these differences, some expert

systems, (particularly those that perform real-

time control tasks), look very much like

agents. A good example is ARCHON [27],

which started life as a collection of expert

systems, and ended up being viewed as a

multi-agent system. ARCHON operates in the

domain of industrial process control.

Agents and Objects

Object-oriented development techniques have

been promoted as ‘best practice’ by the

academic computer science community for at

least a decade. Fueled by recent popular

interest in lan- guages such as JAVA, object-

oriented approaches are finally leaving the

relative backwater of academia and entering

the mainstream. While there is much ongoing

debate about many as- pects of object-

oriented development, there is broad

agreement that an object is an entity that

encapsulates some state and a collection of
methods, corresponding to operations that

may be performed on that state. Methods are

typically invoked as a result of messages sent

to the object (one may think of these

messages as requests for services).

The most obvious difference between the

‘standard’ object model and our view of

agent- based systems is that in traditional

object-oriented programs, there is a single

thread of control. In contrast, agents are

process-like, concurrently executing entities.

However, there have been variants on the

basic object model in which objects are more

like processes: object-based concurrent

programming models such as ACTORS [1]

have long been recognized as an elegant

model for concurrent computation, and

‘active object’ systems are also quite similar;

even comparatively early on in the

development of object-oriented programming,

it was recognized that something like agents

would be a natural next step.

Given these remarks, it may seem that agents

are identical to (active) objects in most impor-

tant respects: they encapsulate both state and

behaviour, and communicate via message

pass- ing1. But agents are not simply objects

by another name. This is because an agent is a

rational decision making system: we require

an agent to be capable of reactive and pro-

active behaviour, and of interleaving these

types of behaviour as the situation demands.

The object-oriented re- search community has

nothing whatsoever to say about building

systems that are capable of this kind of

behaviour. In contrast, the design of such

systems is a fundamental research topic

in the intelligent agents community [66]2. In

addition, the object-oriented community has

not addressed issues like cooperation,

competition, negotiation, computational

economies, and so on, that form the

foundation for multi-agent systems

development [6].

Agents as Rational Systems
An obvious problem is how to conceptualize

systems that are capable of rational behaviour

of the type discussed above. One of the most

successful solutions to this problem involves

viewing agents as intentional systems [10],

whose behaviour can be predicted and

explained in terms of attitudes such as belief,

desire, and intention [47]. The rationale for

this approach is that in everyday life, we use a

folk psychology to explain and predict the

behaviour of complex intelligent systems:

people. For example, we use statements such

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

as Michael intends to write a paper in order to

explain Michael’s behaviour. Once told this

statement, we expect to find Michael shelving

other commitments and developing a plan to

write the paper; we would expect him to

spend a lot of time at his computer; we would

not be surprised to find him in a grumpy

mood; but we would be surprised to find him

at a late night party.

This intentional stance, whereby the

behaviour of a complex system is understood

via the attribution of attitudes such as

believing and desiring, is simply an

abstraction tool. It is a convenient shorthand

for talking about complex systems, which

allows us to succinctly predict and explain

their behaviour without having to understand

how they actually work. Now, much of

computer science is concerned with looking

for good abstraction mechanisms, since these

allow system developers to manage

complexity with greater ease: witness

procedural abstrac- tion, abstract data types,

and most recently, objects. So, why not use

the intentional stance as an abstraction tool in

computing — to explain, understand, and,

crucially, program complex computer

systems?

For many researchers in AI, this idea of

programming computer systems in terms of

‘men- talistic’ notions such as belief, desire,

and intention is the key component of agent-

based com- puting. The concept was

articulated most clearly by Yoav Shoham, in

his agent-oriented pro- gramming (AOP)

proposal [57]. There seem to be a number of

arguments in favour of AOP. First, it offers us

a familiar, non-technical way to talk about

complex systems. We need no formal training

to understand mentalistic talk: it is part of our

everyday linguistic ability.

Secondly, AOP may be regarded as a kind of

‘post-declarative’ programming. In procedu-

ral programming, saying what a system

should do involves stating precisely how to do

it, by writing a detailed algorithm. Procedural

programming is difficult because it is hard for

people to think in terms of the detail required.

In declarative programming (a` la PROLOG),

the aim is to reduce the emphasis on control

aspects: we state a goal that we want the

system to achieve, and let a built-in control

mechanism (e.g., goal-directed refutation

theorem proving) figure out what to do in

order to achieve it. However, in order to

successfully write efficient or large programs

in a language like PROLOG, it is necessary

for the programmer to have a detailed un-

derstanding of how the built-in control

mechanism works. This conflicts with one of

the main goals of declarative programming: to

relieve the user of the need to deal with

control issues. In AOP, the idea is that, as in

declarative programming, we state our goals,

and let the built-in control mechanism figure

out what to do in order to achieve them. In

this case, however, the control mechanism

implements some model of rational agency

(such as the Cohen-Levesque theory of

intention [9], or the Rao-Georgeff BDI model

[47]). Hopefully, this computational

model corresponds to our own intuitive

understanding of (say) beliefs and desires, and

so we need no special training to use it.

Returning to the example we used above,

suppose we told our autopilot agent to land at

LAX airport. Then we would expect the agent

to continue to attempt to land at LAX until it

had succeeded, or else it discovered that this

goal was impossible. We would not expect

the agent to accept any other goal that was not

consistent with landing at LAX, and we

would expect the agent to continue attempting

different strategies for achieving the goal in

the event of difficulties. Ideally, as AOP

programmers, we would not be concerned

with how the agent achieves its goals. The

reality, as ever, does not quite live up to the

ideal.

Interestingly, we again find that researchers

from a more mainstream computing discipline

have adopted a similar set of ideas. In

theoretical computer science, logics of

knowledge are used to reason about

distributed systems [13]. The idea is that

when specifying such systems, one often

makes use of statements such as the

following:

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

This kind of statement may be

formalised using a logic of knowledge.

Although most work on knowledge

theory in distributed systems has been

rather abstract, and unconnected with

software practice, researchers have

recently begun to pay serious attention

to the possibility of directly

programming systems using statements

such as (1), above [13, pp233–271].

The idea is very close to AOP.

Now that we understand what an

agent is, we can begin to look at

software engineering for agent-based

systems.

Specification

The software development process begins by

establishing the client’s requirements. When

this process is complete, a specification is

developed, which sets out the functionality of

the new system. The purpose of this section is

to consider what a specification for an agent-

based system might look like. What are the

requirements for an agent specification

framework? What sort of properties must it be

capable of representing? To answer this

question, we return to the properties of agents,

as discussed in the preceding section.

We observed above that agents are situated in

an environment, and are able to perceive this

environment through sensors of some kind.

Agents thus have information about their

envi- ronment. This leads to our first

requirement: that the agent specification

framework must be capable of representing

both the state of the environment itself, and

the information an agent has about the

environment. It is worth making some

comments about what properties this infor-

mation might have. First, the information an

agent has may be incorrect. The agent’s

sensors may be faulty, the information might

be out of date, or the agent may have been

deliberately or accidentally given false

information. Secondly, the information an

agent has is not directly available to other

agents: agents do not share data structures,

and do not have access to the private data

structures of other agents (this is part of what

we meant by autonomy). Third, the

environment will contain other agents, each

with their own information about the

environment. Thus an agent may have

information about the state of other agents: we

may need to represent such ‘nested’

information. Note that it is common practice

to refer to the information available to an agent

as that agent’s beliefs.

Now consider the notion of reactivity.

Software systems may be broadly divided into

two types: functional and reactive [45]. A

functional system is one that simply takes

some in- put, performs some computation

over this input, and eventually produces some

output. Such systems may be viewed as

functions f : I ! O from a set I of inputs to O

of outputs. The classic example of such a

system is a compiler, which can be viewed as

a mapping from a set I of legal source

programs to a set O of corresponding object

or machine code programs. Although the

internal complexity of the mapping may be

great (e.g., in the case of a really complex

programming language), it is nevertheless the

case that functional programs are, in general,

inherently simpler to specify, design, and

implement than reactive systems. Because

functional systems terminate, it is possible to

use pre- and post-condition formalisms in

order to reason about them [24]. In contrast,

reactive systems do not terminate, but rather

maintain an ongoing interaction with their

environment. It is therefore not possible to use

pre- and post- condition formalisms such as

Hoare logic to reason about them. Instead,

reactive systems must be specified in terms of

their ongoing behaviour. The next

requirement for our agent specifi- cation

framework is that it must be capable of

representing this inherently reactive nature of

agents and multi-agent systems. Note that one

of the most successful formalisms developed

for specifying reactive systems is temporal

logic. The idea is that when specifying a

reactive system, one often wants to state

requirements such as ‘if a request is received,

then a response is eventually sent’. Such

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

requirements are easily and elegantly

expressed in temporal logic.

The third aspect of agents as discussed

above is pro-activeness, by which we mean

that

agents are able to exhibit goal-directed

behaviour. (Note that we use the term ‘goal’

fairly loosely. We include such notions as

commitments or obligations in our usage.) It

does not follow that in order to exhibit goal-

directed behaviour, an agent must explicitly

generate and represent goals [38], although

this is by far the most common approach. Our

agent specification framework must be capable

of representing these conative (goal-directed)

aspects of agency.

Finally, our agents are able to act. Agents do

not typically have complete control over their

environment (our auto-pilot cannot control the

weather), but they are generally able to

influence their environment by performing

actions, and may have reliable control over

portions of it. We require some way of

representing these actions within our

specification framework. To summarize, an

agent specification framework must be

capable of capturing at least the following

aspects of an agent-based system:

 the beliefs agents have;

 the ongoing interaction agents have with

their environment;

 the goals that agent will try to achieve;

 the actions that agents perform and the

effects of these actions.

What sort of specification framework is

capable of representing such aspects of a

system? The most successful approach

appears to be the use of a temporal modal

logic [7] (space restric- tions prevent a

detailed technical discussion on such logics

— see, e.g., [66] for a detailed overview and

extensive references). A typical temporal

modal agent specification framework will

contain:

 normal modal logic connectives for

representing agent’s beliefs;

 temporal logic connectives for representing

the dynamics of the system — its ongoing

behaviour;

 normal modal logic connectives for

representing conatives (e.g., desires,

intentions, obli- gations);

 some apparatus for representing the actions

that agents perform.

Given these requirements, there are a great

many dimensions along which an agent

specification framework may vary: some of

these dimensions are summarized in Table 1.

Note that there is by no means any consensus

on the desirable properties of what we might

call an ‘agent theory’. For example, two of

the best known agent theories are the Cohen-

Levesque theory of intention [9], and the Rao-

Georgeff belief-desire-intention model [47].

The Cohen-Levesque model takes as

primitive just two attitudes: beliefs and goals.

Other attitudes (in particular, the notion of

intention) are built up from these. In contrast,

Rao-Georgeff take intentions as primitives, in

addition to beliefs and goals. Also, Cohen-

Levesque adopt a linear temporal model, (and

state a number of objections to branching

temporal models), whereas branching time is

more or less essential to the Rao-Georgeff

model. As a result, the two formalisms,

though closely related, are irreconcilable.

The key technical problem faced by agent

theorists is developing a model that gives a

good account of the interrelationships

between the various attitudes that together

comprise an agents internal state. Some

contemporary models are reviewed in [66].

Case Study: The Belief-Desire-Intention

Model

One of the most successful agent theories is

the belief-desire-intention (BDI) model of

Rao and Georgeff (see [47] for extensive

references). The technical details of BDI are

somewhat involved, and so here, we shall

simply summarize the main concepts that

underpin BDI models.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

As the name suggests, the internal state of a

BDI agent is comprised of three key data

struc- tures, which are intended to loosely

correspond to beliefs, desires, and intentions.

An agent’s beliefs are intended to represent

the information it has about the world, as we

suggested above. Beliefs will typically be

represented symbolically: in the Procedural

Reasoning System (PRS)

— the best-known BDI implementation —

beliefs look very much like PROLOG facts

[18]. An agent’s desires may be thought of as

the tasks allocated to it. An agent may not in

fact be able to achieve all of its desires, and

in humans, desires may even be inconsistent.

An agent’s intentions represent desires that it

has committed to achieving. The intuition is

that as agents will not, in general, be able to

achieve all their desires, even if these desires

are consistent, they must therefore fix upon

some subset of available desires and commit

resources to achieving them. Chosen desires

are intentions. These intentions will then

feedback into future decision making: for

example, an agent should not in future adopt

intentions that conflict with those it currently

holds.

The BDI model of agency has been

formalised by Rao and Georgeff in a family

of BDI logics [48, 51]. These logics are

extensions to the expressive branching time

logic CTL
 [11], which also contain normal

modal connectives for representing beliefs,

desires, and intentions. Most work on BDI

logics has focussed on possible relationships

between the three ‘mental states’ [48], and

more recently, on developing proof methods

for restricted forms of the log- ics [51].

Discussion
Specification languages for agent-based

systems are an order of magnitude more
complex than the comparatively simple

temporal and modal languages that have

become commonplace in mainstream

computer science. Typically, they are

temporal logics enriched by a family of ad-

ditional modal connectives, for representing

the ‘mental state’ of an agent. There are a

number of problems with such languages, in

addition their conceptual complexity. The

most worry- ing of these is with respect to

their semantics. While the temporal

component of these logics tends to be rather

standard, the semantics for the additional

modal connectives are given in the normal

modal logic tradition of possible worlds [7].

So, for example, an agent’s beliefs in some

state are characterised by a set of different

states, each of which represents one pos-

sibility for how the world could actually be,

given the information available to the agent.

In much the same way, an agents desires in

some state are characterised by a set of states

that are consistent with the agents desires.

Intentions are represented similarly. There are

several advantages to the possible worlds

model: it is well-studied and well-understood,

and the asso- ciated mathematics (known as

correspondence theory) is extremely elegant.

These attractive features make possible

worlds the semantics of choice for almost

every researcher in formal agent theory.

However, there are also a number of serious

drawbacks to possible worlds seman- tics.

First, possible worlds semantics imply that

agents are logically perfect reasoners, (in that

their deductive capabilities are sound and

complete), and they have infinite resources

available for reasoning. No real agent,

artificial or otherwise, has these properties.

Secondly, possible worlds semantics are

generally ungrounded. That is, there is

usually no precise relationship between the

abstract accessibility relations that are used to

characterize an agents state, and any concrete

computational model. As we shall see in later

sections, this makes it is difficult to go from a

formal specification of a system in terms of

beliefs, desires, and so on, to a concrete

computational system. Similarly, given a

concrete computational system, there is

generally no way to determine what the

beliefs, desires, and intentions of that

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

system are. If temporal modal logics of the

type discussed above are to be taken

seriously as

specification languages, then this problem is

significant.

1 Implementation

Specification is not the end of the story

in software development. Once given a

specification, we must implement a

system that is correct with respect to

this specification. The next issue we

consider is this move from abstract

specification to concrete computational

model. There are at least three

possibilities for achieving this

transformation:

1. manually refine the specification

into an executable form via some

principled but infor- mal

refinement process (as is the

norm in most current software

development);

2. somehow directly execute or
animate the abstract specification; or

3. somehow translate or compile the

specification into a concrete

computational form using an

automatic translation technique.

In the sub-sections that follow, we shall

investigate each of these possibilities in

turn.

1.1 Refinement

At the time of writing, most software

developers use structured but informal

techniques to transform specifications into

concrete implementations. Probably the most

common techniques in widespread use are

based on the idea of top-down refinement. In

this approach, an abstract system specification

is refined into a number of smaller, less

abstract sub-system specifications, which

together satisfy the original specification. If

these sub-systems are still too abstract to be

implemented directly, then they are also

refined. The process recurses until the derived

sub-systems are simple enough to be directly

implemented. Throughout, we are obliged to

demonstrate that each step represents a true

refinement of the more abstract specification

that preceded it. This demonstration may take

the form of a formal proof, if our specification

is presented in, say, Z [60] or VDM [29]. More

usually, justification is by informal argument.

For functional systems, the refinement process

is well understood, and comparatively straight-

forward. Refinement calculi exist, which

enable the system developer to take a pre- and

post- condition specification, and from it

systematically derive an implementation

through the use of proof rules [43]. Part of

this reason for this comparative simplicity is

that there is often an easily understandable

relationship between the pre- and post-

conditions that characterize an operation and

the program structures required to implement

it.

For reactive systems, refinement is not so

straightforward. This is because reactive

systems must be specified in terms of their

ongoing behaviour. In contrast to pre- and

post-condition formalisms, it is not so easy to

determine what program structures are

required to realise such specifications. The

refinement problem for agent-based systems,

where specifications may be regarded as even

more abstract than those for reactive systems,

is harder still. As a conse- quence, researchers

have only just begun to investigate the

refinement of agent-based systems. In the

subsections that follow, we shall review two

examples of this work.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

Case Study: Agents in Z

Luck and d’Inverno have developed an agent

specification framework in the Z language, al-

though, as we shall see, the types of agents

considered in this framework are somewhat

dif- ferent from those discussed above [36].

They define a four-tiered hierarchy of the

entities that can exist in an agent-based

system. They start with entities, which are

inanimate objects — they have attributes

(colour, weight, position), but nothing else.

They then define objects to be entities that

have capabilities (e.g., tables are entities that

are capable of supporting things). Agents are

then defined to be objects that have goals, and

are thus in some sense active; finally,

autonomous agents are defined to be agents

with motivations. The idea is that a chair

could be viewed as taking on my goal of

supporting me when I am using it, and can

hence be viewed as an agent for me. But we

would not view a chair as an autonomous

agent, since it has no mo- tivations (and

cannot easily be attributed them). Starting

from this basic framework, Luck and

d’Inverno go on to examine the various

relationships that might exist between agents

of differ- ent types. In [37], they examine how

an agent-based system specified in their

framework might be implemented. They

found that there was a natural relationship

between their hierarchical agent specification

framework and object-oriented systems:

‘The formal definitions of agents and

autonomous agents rely on inheriting the

properties of lower-level components. In the

Z notation, this is achieved through schema

inclusion [. . .]. This is easily modelled in

¡C++ by deriving one class from another. [. . .

] Thus we move from a principled but abstract

theoretical framework through a more

detailed, yet still formal, model of the system,

down to an object- oriented implementation,

preserving the hierarchical structure at each

stage.’ [37]

The Luck-d’Inverno formalism is attractive,

particularly in the way that it captures the

relation- ships that can exist between agents.

The emphasis is placed on the notion of

agents acting for another, rather than on

agents as rational systems, as we discussed

above. The types of agents that the approach

allows us to develop are thus inherently

different from the ‘rational’ agents discussed

above. So, for example, the approach does not

help us to construct agents that can interleave

pro-active and reactive behaviour. This is

largely a result of the chosen specification

language: Z. This language is inherently

geared towards the specification of operation-

based, functional systems. The basic language

has no mechanisms that allow us to easily

specify the ongoing behaviour of an agent-

based system3.

Case Study: A Methodology for BDI

Agents

In section 3, we noted that the belief-desire-

intention (BDI) model is one of the most
successful general frameworks for agency. In

[32], Kinny et al propose a four-stage design

methodology for systems of BDI agents. The

methodology is closely linked to a specific

realization of the BDI model: the PRS

architecture [18]. The methodology may be

summarized as follows:

Identify the relevant roles in the application

domain, and on the basis of these, develop an

agent class hierarchy. An example role might

be weather monitor, whereby agent i is

required to make agent j aware of the

prevailing weather conditions every hour.

Identify the responsibilities associated with

each role, the services required by and pro-

vided by the role, and then determine the goals

associated with each service. With respect to

the above example, the goals would be to find

out the current weather, and to make agent j

aware of this information.

For each goal, determine the plans that may

be used to achieve it, and the context con-

ditions under which each plan is appropriate.

With respect to the above example, a plan for

the goal of making agent j aware of the

weather conditions might involve sending a

message to j.

Determine the belief structure of the system

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

— the information requirements for each plan

and goal. With respect to the above example,

we might propose a unary predicate

windspeed(x) to represent the fact that the

current wind speed is x. A plan to determine

the current weather conditions would need to

be able to represent this information.

Note that the analysis process will be

iterative, as in more traditional

methodologies. The outcome will be a model

that closely corresponds to the PRS agent

architecture. As a result, the move from end-

design to implementation using PRS is

relatively simple.

Kinny et al illustrate their methodology by

applying it to an implemented air traffic man-

agement system called OASIS. This system,

currently being deployed at Sidney airport in

Aus- tralia, is, by any measure, a large and

difficult application. It is arguably the most

significant agent application yet developed.

That the agent approach has been successfully

applied in this domain is encouraging; the use

of the methodology even more so.

Directly Executing Agent

Specifications
One major disadvantage with manual

refinement methods is that they introduce the

possibility of error. If no proofs are provided,

to demonstrate that each refinement step is

indeed a true refinement, then the correctness

of the implementation process depends upon

little more than the intuitions of the

developer. This is clearly an undesirable state

of affairs for applications in which

correctness is a major issue. One possible way

of circumventing this problem, that has been

widely investigated in mainstream computer

science, is to get rid of the refinement process

altogether, and directly execute the

specification.

It might seem that suggesting the direct

execution of complex agent specification

languages is naive. (It is exactly the kind of

suggestion that detractors of symbolic AI

hate.) One should be therefore be very careful

about what claims or proposals one makes.

However, in certain circumstances, the direct

execution of agent specification languages is

possible.

What does it mean, to execute a formula ' of

logic L? It means generating a logical model,

M, for ', such that M j= ' [15]. If this could

done without interference from the

environment

— if the agent had complete control over its

environment — then execution would reduce

to constructive theorem proving, where we

show that ' is satisfiable by building a model

for '. In reality of course, agents are not

interference-free: they must iteratively

construct a model in the presence of input

from the environment. Execution can then be

seen as a two-way iterative process:

 environment makes something true;

 agent responds by doing something,

i.e., making something else true in the

model;

 environment responds, making
something else true;

 . . .

Execution of logical languages and theorem

proving are thus closely related. This tells us

that the execution of sufficiently rich

(quantified) languages is not possible (since

any language equal in expressive power to

first-order logic is undecidable).

A useful way to think about execution is as if

the agent is playing a game against the

environment. The specification represents the

goal of the game: the agent must keep the

goal satisfied, while the environment tries to

prevent the agent doing so. The game is

played by agent and environment taking it in

turns to build a little more of the model. If the

specification ever becomes false in the

(partial) model, then the agent loses. In real

reactive systems, the game is never over: the

agent must continue to play forever. Of

course, some specifications (logically

inconsistent ones) cannot ever be satisfied. A

winning strategy for building models from

(satisfiable) agent specifications in the

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

presence of arbitrary input from the

environment is an execution algorithm for the

logic.

Case Study: Concurrent METATEM

Concurrent METATEM is a programming

language for multi-agent systems, that is

based on the idea of directly executing linear

time temporal logic agent specifications [16,

14]. A Con- current METATEM system

contains a number of concurrently executing

agents, each of which

is programmed by giving it a temporal logic

specification of the behaviour it is intended

the agent should exhibit. An agent

specification has the form
V

i Pi) Fi, where

Pi is a temporal

logic formula referring only to the present or

past, and Fi is a temporal logic formula

referring

to the present or future. The Pi) Fi formulae

are known as rules. The basic idea for

executing such a specification may be

summed up in the following slogan:

on the basis of the past do the future.

Thus each rule is continually matched against

an internal, recorded history, and if a match is

found, then the rule fires. If a rule fires, then

any variables in the future time part are

instan- tiated, and the future time part then

becomes a commitment that the agent will

subsequently attempt to satisfy. Satisfying a

commitment typically means making some

predicate true within the agent. Here is a

simple example of a Concurrent METATEM

agent definition:

 ask(x)) give(x)

(:ask(x) Z (give(x) ̂ :ask(x))) :give(x)

give(x) ̂ give(y)) (x = y)

The agent in this example is a controller for a

resource that is infinitely renewable, but

which may only be possessed by one agent at

any given time. The controller must therefore

enforce mutual exclusion. The predicate

ask(x) means that agent x has asked for the

resource. The predicate give(x) means that the

resource controller has given the resource to

agent x. The resource controller is assumed to

be the only agent able to ‘give’ the resource.

However, many agents may ask for the

resource simultaneously. The three rules that

define this agent’s behaviour may be

summarized as follows:

Rule 1: if someone asks, then eventually give;

Rule 2: don’t give unless someone has asked

since you last gave; and

Rule 3: if you give to two people, then they

must be the same person (i.e., don’t give to

more than one person at a time).

Note that Concurrent METATEM agents can

communicate by asynchronous broadcast

message passing, though the details are not

important here.

1.2 Compiling Agent

Specifications
An alternative to direct execution is

compilation. In this scheme, we take our

abstract spec- ification, and transform it into a

concrete computational model via some

automatic synthesis process. The main

perceived advantages of compilation over

direct execution are in run-time efficiency.

Direct execution of an agent specification, as in

Concurrent METATEM, above, typi- cally

involves manipulating a symbolic

representation of the specification at run time.

This ma- nipulation generally corresponds to

reasoning of some form, which is

computationally costly (and in many cases,

simply impracticable for systems that must

operate in anything like real time). In contrast,

compilation approaches aim to reduce abstract

symbolic specifications to a much simpler

computational model, which requires no

symbolic representation. The ‘reason- ing’

work is thus done off-line, at compile-time;

execution of the compiled system can then be

done with little or no run-time symbolic

reasoning. As a result, execution is much

faster. The advantages of compilation over

direct execution are thus those of compilation

over interpreta- tion in mainstream

programming.

Compilation approaches usually depend upon

the close relationship between models for

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

temporal/modal logic (which are typically

labeled graphs of some kind), and automata-

like finite state machines. Crudely, the idea

is to take a specification ', and do a

constructive proof of the implementability of

', wherein we show that the specification is

satisfiable by systematically attempting to

build a model for it. If the construction

process succeeds, then the specification is

satisfiable, and we have a model to prove it.

Otherwise, the specification is unsatisfiable. If

we have a model, then we ‘read off’ the

automaton that implements ' from its

corresponding model. The most common

approach to constructive proof is the

semantic tableaux method of Smullyan [59].

In mainstream computer science, the

compilation approach to automatic program

synthesis has been investigated by a number of

researchers. Perhaps the closest to our view is

the work of Pnueli and Rosner [46] on the

automatic synthesis of reactive systems from

branching time temporal logic specifications.

The goal of their work is to generate reactive

systems, which share many of the properties

of our agents (the main difference being that

reactive systems are not generally required to

be capable of rational decision making in the

way we described above). To do this, they

specify a reactive system in terms of a first-

order branching time tem- poral logic formula

8x 9y A '(x; y): the predicate '

characterises the relationship between inputs

to the system (x) and outputs (y). Inputs may

be thought of as sequences of environment

states, and outputs as corresponding

sequences of actions. The A is a branching

time temporal logic connective meaning ‘on

all paths’, or ‘in all possible futures’. The

specification is in- tended to express the fact

that in all possible futures, the desired

relationship ' holds between the inputs to the

system, x, and its outputs, y. The synthesis

process itself is rather complex: it involves

generating a Rabin tree automaton, and then

checking this automaton for emptiness. Pnueli

and Rosner show that the time complexity of

the synthesis process is double exponential

in the size of the specification, i.e., O(22
c:n

),

where c is a constant and n = j

j is the size of the

specification '. The size of the synthesized

program (the number of states it contains) is of

the same complexity.

The Pnueli-Rosner technique is rather similar

to (and in fact depends upon) techniques de-

veloped by Wolper, Vardi, and colleagues for

synthesizing Büchi automata from linear

temporal logic specifications [61]. Büchi

automata are those that can recognise !-

regular expressions: regular expressions that

may contain infinite repetition. A standard

result in temporal logic theory is that a

formula ' of linear time temporal logic is

satisfiable if and only if there exists a Büchi

automaton that accepts just the sequences

that satisfy '. Intuitively, this is because the

sequences over which linear time temporal

logic is interpreted can be viewed as !-

regular expressions. This result yields a

decision procedure for linear time temporal

logic: to deter- mine whether a formula ' is

satisfiable, construct an automaton that

accepts just the (infinite) sequences that

correspond to models of '; if the set of

such sequences is empty, then ' is

unsatisfiable. The technique for constructing

an automaton from the corresponding formula

is closely based on Wolper’s tableau proof

method for temporal logic [62].

Similar automatic synthesis techniques have

also been deployed to develop concurrent sys-

tem skeletons from temporal logic

specifications. Manna and Wolper present an

algorithm that takes as input a linear time

temporal logic specification of the

synchronization part of a concurrent system,

and generates as output a CSP program

skeleton ([25]) that realizes the specification

[41]. The idea is that the functionality of a

concurrent system can generally be divided

into two parts: a functional part, which

actually performs the required computation in

the program, and a synchronization part,

which ensures that the system components

cooperate in the correct way. For example, the

synchronization part will be responsible for

any mutual exclusion that is required. The

synthesis algorithm, (like the synthesis

algorithm for Büchi automata, above), is

'

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

based on Wolper’s tableau proof method for

temporal logic [62]. Very similar work is

reported by Clarke and Emerson [8]: they

synthesize synchronization skeletons from

branching time temporal logic (CTL)

specifications.

Case Study: Situated Automata

Perhaps the best-known example of this

approach to agent development is the situated

au- tomata paradigm of Rosenschein and

Kaelbling [52, 31]. In this approach, an agent

has two main components:

 a perception part, which is responsible for

observing the environment, and updating the

internal state of the agent; and

 an action part, which is responsible for

deciding what action to perform, based on

the internal state of the agent.

Rosenschein and Kaelbling developed two

programs to support the development of the

percep- tion and action components of an

agent respectively. The RULER program takes

a declarative perception specification and

compiles it down to a finite state machine.

The specification is given in terms of a theory

of knowledge. The semantics of knowledge in

the declarative speci- fication language are

given in terms of possible worlds, in the way

described above. Crucially, however, the

possible worlds underlying this logic are

given a precise computational interpre- tation,

in terms of the states of a finite state machine.

It is this precise relationship that permits the

synthesis process to take place.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

The action part of an agent in Rosenschein and

Kaelbling’s framework is specified in terms of

goal reduction rules, which encode

information about how to achieve goals. The

GAPPS program takes as input a goal

specification, and a set of goal reduction

rules, and generates as output a set of situation

action rules, which may be thought of as a

lookup table, defining what the agent should

do under various circumstances, in order to

achieve the goal. The process of deciding

what to do is then very simple in

computational terms, involving no reasoning

at all. (A similar technique, called universal

plans, was developed by Schoppers [54].)

1.3 Discussion

Structured but informal refinement techniques

are the mainstay of real-world software engi-

neering. If agent-oriented techniques are ever

to become widely used outside the academic

community, then informal, structured

methods for agent-based development will be

essential. One possibility for such techniques,

followed by Luck and d’Inverno, is to use a

standard spec- ification technique (in their

case, Z), and use traditional refinement

methods (in their case, object-oriented

development) to transform the specification

into an implementation. This ap- proach has

the advantage of being familiar to a much

larger user-base than entirely new tech-

niques, but suffers from the disadvantage of

presenting the user with no features that make

it particularly well-suited to agent

specification. It seems certain that there will

be much more work on manual refinement

techniques for agent-based systems in the

immediate future, but exactly what form these

techniques will take is not clear.

Now consider the possibility of directly

executing agent specifications. A number of
prob- lems immediately suggest themselves.

The first is that of finding a concrete

computational interpretation for the agent

specification language in question. To see

what we mean by this, consider models for the

agent specification language in Concurrent

METATEM. These are very simple: essentially

just linear discrete sequences of states.

Temporal logic is (amongst other things)

simply a language for expressing constraints

that must hold between successive states.

Execution in Concurrent METATEM is thus a

process of generating constraints as past-time

antecedents are satisfied, and then trying to

build a next state that satisfies these

constraints. Constraints are expressed in

temporal logic, which implies that they may

only be in certain, regular forms. Because of

this, it is possible to devise an algorithm that

is guaranteed to build a next state if it is

possible to do so. Such an algorithm is

described in [3].

The agent specification language upon which

Concurrent METATEM is based thus has a

concrete computational model, and a

comparatively simple execution algorithm.

Contrast this state of affairs with the kinds of

temporal modal agent specification languages

discussed in section 3, where we have not

only a temporal dimension to the logic, but

also modalities for referring to beliefs,

desires, and so on. In general, these models

have ungrounded semantics. That is, the

semantic structures that underpin these logics

(typically accessibility relations for each of

the modal operators) have no concrete

computational interpretation. As a result, it is

not clear how such agent specification

languages might be executed.

Another obvious problem is that execution

techniques based on theorem proving are

inher- ently limited when applied to sufficiently

expressive (first-order) languages, as first-

order logic is undecidable. However,

complexity is a problem even in the

propositional case. For ‘vanilla’ propositional

logic, the decision problem for satisfiability is

NP-complete [13, p72]; for linear temporal

logic, the problem is PSPACE-complete [58];

for simple modal logics of knowledge, the

problem is NP-complete, and for more

complex modal logics of knowledge, the

problem is EXPTIME-complete [13, p73]; for

logics that combine temporal and (S5) modal

aspects, the de-

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

1

cision problem varies from PSPACE-complete

in the simplest case to 1-complete, (and

hence undecidable) in the propositional case,

depending on what semantic assumptions are

made [13, p289].

Turning to automatic synthesis, we find that

the techniques described above have been

developed primarily for propositional

specification languages. If we attempt to

extend these techniques to more expressive,

first-order specification languages, then we

again find ourselves coming up against the

undecidability of quantified logic. Even in the

propositional case, the theoretical complexity

of theorem proving for modal and temporal

logics is likely to limit the effectiveness of

compilation techniques: given an agent

specification of size 1000, a synthesis

algorithm that runs in exponential time when

used off-line is no more useful than an

execution algorithm which runs in exponential

time on-line.

Another problem with respect to synthesis

techniques is that they typically result in

finite- state, automata like machines, that are

strictly less powerful than Turing machines.

In partic- ular, the systems generated by the

processes outlined above cannot modify their

behaviour at run-time. In short, they cannot

learn. While for many applications, this is

acceptable — even desirable — for equally

many others, it is not. In expert assistant

agents, of the type described in [39], learning

is pretty much the raison d’etre. Attempts to

address this issue are described in [30].

2 Verification

Once we have developed a concrete

system, we need to show that this

system is correct with respect to our

original specification. This process is

known as verification, and it is

particularly important if we have

introduced any informality into the

development process. For example, any

manual refinement, done without a

formal proof of refinement correctness,

creates the possibility of a faulty

transformation from specification to

implementation. Verification is the

process of convincing ourselves that the

transformation was sound. We can

divide approaches to the verification of

systems into two broad classes: (1)

axiomatic; and (2) semantic (model

checking). In the subsections that

follow, we shall look at the way in

which these two ap- proaches have

evidenced themselves in agent-based

systems.

2.1 Axiomatic Approaches

Axiomatic approaches to program verification

were the first to enter the mainstream of com-

puter science, with the work of Hoare in the

late 1960s [24]. Axiomatic verification

requires that we can take our concrete

program, and from this program

systematically derive a logi- cal theory that

represents the behaviour of the program. Call

this the program theory. If the program theory

is expressed in the same logical language as the
original specification, then ver- ification

reduces to a proof problem: show that the

specification is a theorem of (equivalently, is a

logical consequence of) the program theory.

The development of a program theory is

made feasible by axiomatizing the

programming language in which the system

is implemented. For example, Hoare logic

gives us more or less an axiom for every

statement type in a simple PASCAL-like

language. Once given the axiomatization, the

program theory can be derived from the

program text in a systematic way. Perhaps the

most relevant work from mainstream

computer science is the specification and

verification of reactive systems using

temporal logic, in the way pioneered by

Pnueli, Manna,

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

and colleagues [40]. The idea is that the

computations of reactive systems are infinite

se- quences, which correspond to models for

linear temporal logic
4
. Temporal logic can be

used both to develop a system specification,

and to axiomatize a programming language.

This ax- iomatization can then be used to

systematically derive the theory of a program

from the program text. Both the specification

and the program theory will then be encoded

in temporal logic, and verification hence

becomes a proof problem in temporal logic.

Comparatively little work has been carried out

within the agent-based systems community on

axiomatizing multi-agent environments. We

shall review just one approach.

Case Study: Axiomatizing two Multi-

Agent Languages

In [63], an axiomatic approach to the

verification of multi-agent systems was

proposed. Es- sentially, the idea was to use a

temporal belief logic to axiomatize the

properties of two multi- agent programming

languages. Given such an axiomatization, a

program theory representing the properties of

the system could be systematically derived in

the way indicated above.

A temporal belief logic was used for two

reasons. First, a temporal component was

required because, as we observed above, we

need to capture the ongoing behaviour of a

multi-agent system. A belief component was

used because the agents we wish to verify are

each symbolic AI systems in their own right.

That is, each agent is a symbolic reasoning

system, which includes a representation of its

environment and desired behaviour. A belief

component in the logic allows us to capture the

symbolic representations present within each

agent.

The two multi-agent programming languages

that were axiomatized in the temporal belief

logic were Shoham’s AGENT0 [57], and

Fisher’s Concurrent METATEM(see above).

The basic approach was as follows:

First, a simple abstract model was developed

of symbolic AI agents. This model captures the

fact that agents are symbolic reasoning

systems, capable of communication. The

model gives an account of how agents might

change state, and what a computation of such

a system might look like.

The histories traced out in the execution of

such a system were used as the semantic basis

for a temporal belief logic. This logic allows

us to express properties of agents modelled at

stage (1).

The temporal belief logic was used to

axiomatize the properties of a multi-agent

pro- gramming language. This axiomatization

was then used to develop the program theory

of a multi-agent system.

The proof theory of the temporal belief logic

was used to verify properties of the sys- tem

[65].

Note that this approach relies on the operation

of agents being sufficiently simple that their

properties can be axiomatized in the logic. It

works for Shoham’s AGENT0 and Fisher’s

Con- current METATEM largely because these

languages have a simple semantics, closely

related to rule-based systems, which in turn

have a simple logical semantics. For more

complex agents,

an axiomatization is not so

straightforward. Also, capturing the

semantics of concurrent exe- cution of

agents is not easy (it is, of course, an

area of ongoing research in computer

science generally).

Semantic Approaches: Model

Checking
Ultimately, axiomatic verification reduces to

a proof problem. Axiomatic approaches to

ver- ification are thus inherently limited by

the difficulty of this proof problem. Proofs are

hard enough, even in classical logic; the

addition of temporal and modal connectives

to a logic makes the problem considerably

harder. For this reason, more efficient

approaches to verifi- cation have been sought.

One particularly successful approach is that of

model checking. As the name suggests,

whereas axiomatic approaches generally rely

on syntactic proof, model checking

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

approaches are based on the semantics of the

specification language.

The model checking problem, in abstract, is

quite simple: given a formula ' of language L,

and a model M for L, determine whether or

not ' is valid in M, i.e., whether or not M j=L

'. Model checking-based verification has been

studied in connection with temporal logic

[35]. The technique once again relies upon the

close relationship between models for

temporal logic and finite-state machines.

Suppose that ' is the specification for some

system, and is a program that claims to

implement '. Then, to determine whether or

not truly implements ', we proceed as

follows:

 take , and from it generate a model M that

corresponds to , in the sense that M

encodes all the possible computations of ;

 determine whether or not M j= ', i.e.,

whether the specification formula ' is valid in

M ; the program satisfies the specification '

just in case the answer is ‘yes’.

The main advantage of model checking over

axiomatic verification is in complexity: model

checking using the branching time temporal

logic CTL ([8]) can be done in polynomial

time (O(j'j jMj), where j'j is the size of the

formula to be checked, and jMj is the size of

the model against which ' is to be checked —

the number of states it contains)5.

Case Study: Model Checking BDI

Systems

In [50], Rao and Georgeff present an

algorithm for model checking AOP systems.

More pre- cisely, they give an algorithm for

taking a logical model for their

(propositional) BDI agent specification

language, and a formula of the language, and

determining whether the formula is valid in

the model. The technique is closely based on

model checking algorithms for normal modal

logics [21]. They show that despite the

inclusion of three extra modalities, (for

beliefs, desires, and intentions), into the CTL

branching time framework, the algorithm is

still quite effi- cient, running in polynomial

time. So the second step of the two-stage

model checking process described above can

still be done efficiently. However, it is not

clear how the first step might be realised for

BDI logics. Where does the logical model

characterizing an agent actually comes from

— can it be derived from an arbitrary

program , as in mainstream computer science?

To do this, we would need to take a program

implemented in, say, PASCAL, and from it

derive the

belief, desire, and intention

accessibility relations that are used to

give a semantics to the BDI component

of the logic. Because, as we noted

earlier, there is no clear relationship

between the BDI logic and the concrete

computational models used to

implement agents, it is not clear how

such a model could be derived.

Discussion

Axiomatic approaches to the verification of

multi-agent systems suffer from two main

prob- lems. First, the temporal verification of

reactive systems relies upon a simple model

of con- currency, where the actions that

programs perform are assumed to be atomic.

We cannot make this assumption when we

move from programs to agents. The actions

we think of agents as performing will

generally be much more coarse grained. As a

result, we need a more realistic model of

concurrency. One possibility, investigated in

[64], is to model agent execution cycles as

intervals over the real numbers, in the style of

the temporal logic of reals [4]. The second

problem is the difficulty of the proof problem

for agent specification languages. As we

noted in section 3, the theoretical complexity

of proof for many of these logics is quite

daunting.

With respect to model-checking approaches,

the main problem, as we indicated above, is

again the issue of ungrounded semantics for

agent specification languages. If we cannot

take an arbitrary program and say, for this

program, what its beliefs, desires, and

intentions are, then it is not clear how we

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

might verify that this program satisfied a

specification expressed in terms of such

constructs.

Conclusions
Agent-based systems are a promising

development, not just for AI, but for computer

science generally. If intelligent agent

technology succeeds, then it will provide a

solution to many important but difficult

software problems. The challenge now before

the intelligent agent com- munity is to ensure

that the techniques developed particularly over

the past decade for building rational agents

make a smooth transition from the research lab

to the desk of the everyday com- puter worker.

This is by no means easy, as the expert

systems experience demonstrates. If the

community is to succeed in this endeavour,

then it will need to take very seriously the

comment by Oren Etzioni, that opened this

paper: agents are more a problem of computer

science and software engineering than AI.

In this paper, we have set out a roadmap for

work in agent-based software engineering. We

have examined the fundamental problems of

specification, implementation, and

verification from the point of view of agent-

based systems. Throughout, we have been

careful to draw as many parallels as possible

with more mainstream software engineering.

Acknowledgments

I would like to thank Michael Fisher for the

(many) discussions we have had on software

engi- neering for agent-based systems, and

also Adam Kellett and Nick Jennings for their

comments on this paper. This work was

supported by the EPSRC under grant

GR/K57282.

References
G. Agha. ACTORS: A Model of Concurrent

Computation in Distributed Systems. The

MIT Press: Cambridge, MA, 1986.

J. F. Allen. Towards a general theory of action

and time. Artificial Intelligence, 23(2):123–

154, 1984.

H. Barringer, M. Fisher, D. Gabbay, G.

Gough, and R. Owens. METATEM: A

framework for programming in temporal

logic. In REX Workshop on Stepwise

Refinement of Dis- tributed Systems: Models,

Formalisms, Correctness (LNCS Volume

430), pages 94–129. Springer-Verlag:

Heidelberg, Germany, June 1989.

H. Barringer, R. Kuiper, and A. Pnueli. A

really abstract concurrent model and its tem-

poral logic. In Proceedings of the Thirteenth

ACM Symposium on the Principles of Pro-

gramming Languages, pages 173–183, 1986.

N. Belnap and M. Perloff. Seeing to it that: a

canonical form for agentives. Theoria,

54:175–199, 1988.

A. H. Bond and L. Gasser, editors. Readings in

Distributed Artificial Intelligence. Morgan

Kaufmann Publishers: San Mateo, CA, 1988.

B. Chellas. Modal Logic: An Introduction.

Cambridge University Press: Cambridge,

England, 1980.

E. M. Clarke and E. A. Emerson. Design and

synthesis of synchronization skeletons using

branching time temporal logic. In D. Kozen,

editor, Logics of Programs — Proceedings

1981 (LNCS Volume 131), pages 52–71.

Springer-Verlag: Heidelberg, Germany, 1981.

P. R. Cohen and H. J. Levesque. Intention is

choice with commitment. Artificial Intelli-

gence, 42:213–261, 1990.

D. C. Dennett. The Intentional Stance. The

MIT Press: Cambridge, MA, 1987.

E. A. Emerson and J. Y. Halpern.

‘Sometimes’ and ‘not never’ revisited: on

branching time versus linear time temporal

logic. Journal of the ACM, 33(1):151–178,

1986.

O. Etzioni. Moving up the information food

chain: Deploying softbots on the world-wide

web. In Proceedings of the Thirteenth

National Conference on Artificial Intelligence

(AAAI-96), Portland, OR, 1996.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y.

Vardi. Reasoning About Knowledge. The

MIT Press: Cambridge, MA, 1995.

M. Fisher. A survey of Concurrent

METATEM — the language and its

applications. In

D. M. Gabbay and H. J. Ohlbach, editors,

Temporal Logic — Proceedings of the First

In- ternational Conference (LNAI Volume 827),

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

pages 480–505. Springer-Verlag: Heidelberg,

Germany, July 1994.

M. Fisher. Executable temporal logic. The

Knowledge Engineering Review, 1996.

M. Fisher and M. Wooldridge. Executable

temporal logic for distributed A.I. In Proceed-

ings of the Twelfth International Workshop on

Distributed Artificial Intelligence (IWDAI-

93), pages 131–142, Hidden Valley, PA, May

1993.

M. R. Genesereth and S. P. Ketchpel.

Software agents. Communications of the

ACM, 37(7):48–53, July 1994.

M. P. Georgeff and A. L. Lansky. Reactive

reasoning and planning. In Proceedings of the

Sixth National Conference on Artificial

Intelligence (AAAI-87), pages 677–682,

Seattle, WA, 1987.

R. V. Guha and D. B. Lenat. Enabling agents

to work together. Communications of the

ACM, 37(7):127–142, July 1994.

J. Y. Halpern. Knowledge and common

knowledge in a distributed environment.

Journal of the ACM, 37(3), 1990.

J. Y. Halpern and M. Y. Vardi. Model

checking versus theorem proving: A

manifesto. In

V. Lifschitz, editor, AI and Mathematical

Theory of Computation — Papers in Honor of

John McCarthy. Academic Press, 1991.

D. Harel. Dynamic logic. In D. Gabbay and F.

Guenther, editors, Handbook of Philo-

sophical Logic Volume II — Extensions of

Classical Logic, pages 497–604. D. Reidel

Publishing Company: Dordrecht, The

Netherlands, 1984. (Synthese library Volume

164).

F. Hayes-Roth, D. A. Waterman, and D. B.

Lenat, editors. Building Expert Systems.

Addison-Wesley: Reading, MA, 1983.

C. A. R. Hoare. An axiomatic basis for

computer programming. Communications of

the ACM, 12(10):576–583, 1969.

C. A. R. Hoare. Communicating sequential

processes. Communications of the ACM,

21:666–677, 1978.

P. Jackson. Introduction to Expert Systems.

Addison-Wesley: Reading, MA, 1986.

N. R. Jennings, J. Corera, I. Laresgoiti, E. H.

Mamdani, F. Perriolat, P. Skarek, and L. Z.

Varga. Using ARCHON to develop real-world

DAI applications for electricity transporta- tion

management and particle accelerator control.

IEEE Expert, dec 1996.

N. R. Jennings and M. Wooldridge. Applying

agent technology. Applied Artificial Intel-

ligence, 9(6):357–370, 1995.

C. B. Jones. Systematic Software

Development using VDM (second edition).

Prentice Hall, 1990.

L. P. Kaelbling. Learning in Embedded

Systems. The MIT Press: Cambridge, MA,

1993.

L. P. Kaelbling and S. J. Rosenschein.

Action and planning in embedded agents.

In

P. Maes, editor, Designing Autonomous

Agents, pages 35–48. The MIT Press:

Cambridge, MA, 1990.

D. Kinny, M. Georgeff, and A. Rao. A

methodology and modelling technique for

sys- tems of BDI agents. In W. Van de Velde

and J. W. Perram, editors, Agents Breaking

Away: Proceedings of the Seventh European

Workshop on Modelling Autonomous Agents

in a Multi-Agent World, (LNAI Volume

1038), pages 56–71. Springer-Verlag:

Heidelberg, Germany, 1996.

K. Konolige. A Deduction Model of Belief.

Pitman Publishing: London and Morgan

Kaufmann: San Mateo, CA, 1986.

H. J. Levesque, P. R. Cohen, and J. H. T.

Nunes. On acting together. In Proceedings of

the Eighth National Conference on Artificial

Intelligence (AAAI-90), pages 94–99, Boston,

MA, 1990.

O. Lichtenstein and A. Pnueli. Checking that

finite state concurrent programs satisfy their

linear specification. In Proceedings of the

Eleventh ACM Symposium on the Principles

of Programming Languages, pages 97–107,

1984.

M. Luck and M. d’Inverno. A formal

framework for agency and autonomy. In

Proceed- ings of the First International

Conference on Multi-Agent Systems

(ICMAS-95), pages 254–260, San Francisco,

CA, June 1995.

M. Luck, N. Griffiths, and M. d’Inverno.

From agent theory to agent constrution: A

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

case study. In Intelligent Agents III —

Proceedings of the Third International

Workshop on Agent Theories, Architectures,

and Languages (ATAL-96). Springer-Verlag:

Heidelberg, Germany, 1997.

P. Maes. Situated agents can have goals. In P.

Maes, editor, Designing Autonomous Agents,

pages 49–70. The MIT Press: Cambridge,

MA, 1990.

P. Maes. Agents that reduce work and

information overload. Communications of the

ACM, 37(7):31–40, July 1994.

Z. Manna and A. Pnueli. Temporal

Verification of Reactive Systems — Safety.

Springer- Verlag: Heidelberg, Germany, 1995.

Z. Manna and P. Wolper. Synthesis of

communicating processes from temporal logic

specifications. ACM Transactions on

Programming Languages and Systems,

6(1):68–93, January 1984.

J. J. Ch. Meyer and R. J. Wieringa, editors.

Deontic Logic in Computer Science — Nor-

mative System Specification. John Wiley &

Sons, 1993.

C. Morgan. Programming from Specifications

(second edition). Prentice Hall Interna- tional:

Hemel Hempstead, England, 1994.

Inc. NeXT Computer. Object-Oriented

Programming and the Objective C Language.

Addison-Wesley: Reading, MA, 1993.

A. Pnueli. Specification and development of

reactive systems. In Information Processing

86. Elsevier Science Publishers B.V.:

Amsterdam, The Netherlands, 1986.

A. Pnueli and R. Rosner. On the synthesis of

a reactive module. In Proceedings of the

Sixteenth ACM Symposium on the Principles

of Programming Languages (POPL), pages

179–190, January 1989.

A. S. Rao and M. Georgeff. BDI Agents:

from theory to practice. In Proceedings of the

First International Conference on Multi-Agent

Systems (ICMAS-95), pages 312–319, San

Francisco, CA, June 1995.

A. S. Rao and M. P. Georgeff. Modeling

rational agents within a BDI-architecture. In

R. Fikes and E. Sandewall, editors,

Proceedings of Knowledge Representation

and Rea- soning (KR&R-91), pages 473–484.

Morgan Kaufmann Publishers: San Mateo,

CA, April 1991.

A. S. Rao and M. P. Georgeff. An abstract

architecture for rational agents. In C. Rich,

W. Swartout, and B. Nebel, editors,

Proceedings of Knowledge Representation

and Rea- soning (KR&R-92), pages 439–449,

1992.

A. S. Rao and M. P. Georgeff. A model-

theoretic approach to the verification of

situated reasoning systems. In Proceedings of

the Thirteenth International Joint Conference

on Artificial Intelligence (IJCAI-93), pages

318–324, Chambéry, France, 1993.

A. S. Rao and M. P. Georgeff. Formal models

and decision procedures for multi-agent

systems. Technical Note 61, Australian AI

Institute, Level 6, 171 La Trobe Street, Mel-

bourne, Australia, June 1995.

S. Rosenschein and L. P. Kaelbling. The

synthesis of digital machines with provable

epistemic properties. In J. Y. Halpern, editor,

Proceedings of the 1986 Conference on

Theoretical Aspects of Reasoning About

Knowledge, pages 83–98. Morgan Kaufmann

Publishers: San Mateo, CA, 1986.

S. Russell and P. Norvig. Artificial

Intelligence: A Modern Approach. Prentice-

Hall, 1995.

M. J. Schoppers. Universal plans for reactive

robots in unpredictable environments. In

Proceedings of the Tenth International Joint

Conference on Artificial Intelligence (IJCAI-

87), pages 1039–1046, Milan, Italy, 1987.

K. Segerberg. Bringing it about. Journal of

Philosophical Logic, 18:327–347, 1989.

Y. Shoham. Reasoning About Change: Time

and Causation from the Standpoint of Arti-

ficial Intelligence. The MIT Press:

Cambridge, MA, 1988.

Y. Shoham. Agent-oriented programming.

Artificial Intelligence, 60(1):51–92, 1993.

A. P. Sistla and E. M. Clarke. The

complexity of propositional linear temporal

logics.

Journal of the ACM, 32(3):733–749, 1985.

R. M. Smullyan. First-Order Logic. Springer-

Verlag: Heidelberg, Germany, 1968.

M. Spivey. The Z Notation (second edition).

Prentice Hall International: Hemel Hemp-

stead, England, 1992.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.10, No 4, Oct– Dec 2020

M. Y. Vardi and P. Wolper. Reasoning about

infinite computations. Information and

Computation, 115(1):1–37, 1994.

P. Wolper. The tableau method for temporal

logic: An overview. Logique et Analyse, 110–

111, 1985.

M. Wooldridge. The Logical Modelling of

Computational Multi-Agent Systems. PhD

the- sis, Department of Computation, UMIST,

Manchester, UK, October 1992. (Also avail-

able as Technical Report MMU–DOC–94–01,

Department of Computing, Manchester

Metropolitan University, Chester St.,

Manchester, UK).

M. Wooldridge. This is MYWORLD: The

logic of an agent-oriented testbed for DAI. In

M. Wooldridge and N. R. Jennings, editors,

Intelligent Agents: Theories, Architec- tures,

and Languages (LNAI Volume 890), pages

160–178. Springer-Verlag: Heidelberg,

Germany, January 1995.

M. Wooldridge and M. Fisher. A decision

procedure for a temporal belief logic. In D. M.

Gabbay and H. J. Ohlbach, editors, Temporal

Logic — Proceedings of the First Inter-

national Conference (LNAI Volume 827),

pages 317–331. Springer-Verlag: Heidelberg,

Germany, July 1994.

M. Wooldridge and N. R. Jennings.

Intelligent agents: Theory and practice. The

Knowl- edge Engineering Review, 10(2):115–

152, 1995.

