
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

AD flow is a free and open-source computational

fluid dynamics solver for aerodynamic and

interdisciplinary optimization.

Charles A. Mader, Gaetan K. W. Kenway, Anil Yildirim,

University of Michigan, Ann Arbor, Michigan, 48109

Abstract
It is now normal practice to simulate fluid
behavior numerically by solving the Navier-

Stokes equations using turbulence models. To

efficiently optimize a design using a flow

solver in the loop, however, it is necessary to

do more than just solve these equations. An

efficient aerodynamic and interdisciplinary

design optimizer is discussed, along with the

guidelines for constructing such a flow solver.

The ability to load the flow solver as a library

that gives you immediate memory access to the

necessary data is one of the most highly

recommended features. Some further

suggestions include using a higher-level

language for scripting and paying close

attention to solution warm beginning, code

efficiency, flow solver robustness, and solution

failure handling. We provide the open-source

flow solver ADflow as an example of a tool

that adheres to these guidelines. The

performance benefits suggested by the

proposals are supported by the outcomes of

aerodynamic optimization, aerostructural

analysis, and aerostructural optimization

performed using ADflow. The release of these

suggestions and the availability of the source

code opens the door for other solvers to use the

same application programming interface.

ADflow is an open-source component of a

larger set of tools for optimizing aerodynamic

shapes.

1 Introduction
Because the availability and power of

computers has improved, computational

approaches have been applied differently in

engineering design. Formerly reserved for

final design verifications, computationally

expensive simulations are now routinely

used throughout the preliminary design

phase. Many uses may be found for this

newfound potential: One, simulations may

be run at a finer spatial or temporal grain.

Complex physical models may be used in

simulations; for instance, the Reynolds-

Averaged Navier-Stokes (RANS) equations

can be solved in place of the simpler Euler

equations.

This allows for a wider range of flight
configurations to be examined within a given

geometry.

Four, parameter sweeps or an optimization

algorithm may be used to compare and

contrast many designs in search of

improvement and a better knowledge of the

design performance tradeoffs.

5. A multidisciplinary study may be carried

out by combining computational models that

are typically studied separately.

Venkatamaran and Haftka [1] studied the
historical implications of growing computing

performance on structural analysis and

optimization. They observed that time spent on

computational analysis tends to grow to

occupy all available time, in accordance with

Parkinson's Law [2]. A similar rule by

Thimbleby [3] asserts that software programs

develop to take up greater computer memory,

processing capability, and storage space.

Venkata- maran and Haftka [1] also note out

that anecdotal evidence shows that time needed

for “adequate” structural analysis has remained

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

consistent, at 6 to 8 hours over the previous 30

years. Situations 1 and 2 above are exemplified

by the use of refined computational models

made possible by computing advancements.

We think that the key reason for this is because

the first two situations alone do not

substantially impact the complexity of an

engineering design work flow.

In this study, we analyze the criteria required
to accomplish scenarios 3 through 5 in the

context of computational fluid dynamics

(CFD) (CFD). In all three of these cases, the

computational approach must be employed

frequently by fully automated means,

necessitating the inclusion of extra elements

essential to accurate calculation. One of these

must-have characteristics is a clear and simple

API that allows the solver to be used as a built

library with direct memory access (API). This

enables the solver to be deployed successfully

as part of an analytical framework on large-

scale high-performance computing (HPC)

resources.

In this work, we show how ADflow, a free,
open-source, structured, multi-block, overset

flow solver, satisfies these needs.

1 For the CRM shape specifically,

aerodynamic and aerostructural design

optimization challenges are solved by ADflow

[4, 5]. All of the calculations described in this

study are steady-state RANS solutions. A

specific fidelity option or approach to solving

the problem is not necessary to understand or

implement the ideas presented here. The API

has been used to 2D and 3D panel solvers as

well as various 3D flow solvers. Apart than the

shown steady-state solutions, ADflow is also

capable of time-accurate and time-spectral

computations.

What follows is a summary of the paper. In
Part 2, we go into depth about what a multi-

disciplinary solver needs to do, and in Section

3, we present the idea of the solver as a library

of code. In Section 4, we detail the Python API

that was created to meet the requirements laid

forth in Chapter 2. These sections are supposed

to provide a general guidance for solver needs

and are thus solver agnostic. Part 5 discusses

how these conditions were accomplished for

the ADflow solver, and includes an overview

of past investigations made feasible by

ADflow. Many analysis and optimizations are

presented in Section 6 to show how well

ADflow performs. Section 7 outlines the key

results of this investigation.

2 Requirements for an

efficient multidisciplinary

flow solver
Unlike a standalone solver, a flow solver
designed for interdisciplinary analysis or

optimization requires a particular set of

features. In order to solve for a certain

geometry and flow condition with enough

engineering precision, a standalone flow solver

must be as fast as feasible. To solve a

multidisciplinary analysis or optimization

issue, the flow solver works as part of a bigger

framework and has to be performed numerous

times in succession without operator

intervention. As you'll see later, this has

various ramifications for the necessary features

of the flow solver.
2.1 Solution failure handling

2.2 When employing a CFD solver
inside an automated process, as is

essential for interdisciplinary

analysis and optimization, the

solver is typically needed to

examine a large range of operating

points without human interaction.

In this case, it is possible that the

flow solver will be instructed to

execute one or more analyses that

fail to yield an acceptable solution.

For a completely automated

method, the solution must fail

gracefully without incurring an

unrecoverable defect. This is

especially essential for HPC

simulations since the total process

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

might takes many hours or days,

and aborted operations incur the

extra expense of resubmitting the

task and waiting for its turn in the

queue.

2.3 As this is the case, the solution for

an automated process must include

robust exception handling. Whether

the solution completely converges,

diverges, partly converges, stalls, or

generates a NaN (not a number),

these are all significant events that

must be handled. Keeping an eye on

the residual of the flow equations

and using logic trees makes these

scenarios quite straightforward to

deal with. After processing each

scenario, a boolean response may

be returned to the user or the

driving algorithm.

2.4 The primary exception to this is the
circumstance when NaNs are

encountered. In this instance, the

solver has to be reset, including a

thorough re-initialization of the

flow to guarantee that all of the

NaNs in memory are purged so that

future flow solutions are not

cancelled because of a prior NaN in

memory. Although while it is more

expensive to reset the flow solution

entirely, this is still far more

efficient than re-initializing the flow

solver and reallocating all the

necessary memory as a standalone

solver would need to do.

2.5 Solution restart

2.6 The need to automatically execute

several solutions in succession

implies, secondly, that there is a

strong incentive to reduce the cost of
each solution in the series. A solution

restart technique is the quickest and

easiest way to do this, since it ensures

that subsequent solutions begin in a

convergent condition. For many

optimization tasks, like generating

drag polars, sweeping parameters,

and conducting gradient-based

optimizations, the previously-solved

state is preferable to the default

uniform flow. This can be done using

file I/O for most solutions, but doing

it in memory is significantly quicker.

Combining solution restarts with the

right method may significantly

increase the pace at which subsequent

solutions are found. For example,

when the solver is restarted using the

prior answer as the beginning

estimate, Newton's approach

produces great terminal convergence

given a good starting point. This

restart feature should be made

available as an option via the API,

enabling the user to deactivate it if

beginning with a uniform flow is

more advantageous, in circumstances

when the prior solution is not an

appropriate starting point.

2.7 Robust startup
No matter the application, a reliable approach
for initializing the flow solver is always

welcome. Yet, as we compute a series of

successive answers in an automated form, it is

crucial that our launch procedure be as

bulletproof as possible. The automated process

will generate a large set of initial conditions,

from which the solver must converge to a

solution.

Moreover, this is necessary if the flow is reset
because of a poor solution, necessitating a

fresh start at the following solution point. On

top of that, while optimizing a design, the

optimizer is likely to test out impractical

intermediate designs, such as those with

extreme flow separation. For these special

instances, Newton's approach often fails during

the first phases of convergence, while

producing strong terminal convergence. The

necessity for a solid beginning procedure is

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

heightened by these elements.
2.8 Fine-grained iteration control

When utilizing a flow solver in a coupled
analysis (for example, coupled with an external
structural solver or a propulsion model) it is
also vital to be able to manage the number of

iterations conducted for a particular solution.
In many of these circumstances, it has been
proven that completing partial flow solutions
between coupling updates enables the coupled
solution to be completed with just a minimal
increase in the overall flow solution cost. This
has been proved for example, in static

aeroelastic analysis by Kenway et al. [5], who
showed that a relative convergence tolerance
of 0.1 per Efficient convergence through all phases

of solution

Three distinct stages can be identified in the

external aerodynamic simulations we calculate

using ADflow: initialization, steady state, and

shutdown. The near-field of the aerodynamic

surface interacts with the initial flow solution

during the start-up phase. The near-field

solution and the far-field boundary interact,

and the flow solver deals with it at the

transition analysis stage. Finally, the solver

converges the numerical solution of the flow to

further minimize the residuals to the set

convergence tolerance, after having

successfully captured the overall flow patterns.

The first two stages are often the main focus of

traditional engineering flow models. For this

reason, it is sufficient to converge through the

transition phase of the solution only far enough

to instill engineering confidence in the

solution. All three stages of the solution

become crucial, however, since throughout an

optimization, tight numerical convergence of

the solution is desired, particularly towards the

conclusion of the optimization process.

Each of these stages is characterized by a

distinct kind of convergence for various

algorithms. This highlights the need for a

flexible solution algorithm switching

mechanism that may be used throughout each

simulation to improve convergence rates. The

nonlinear residual norm provides a useful

gauge for tracking progress toward

convergence and should trigger these

transitions automatically.

2.9 Direct memory access and

API
Most optimization and interdisciplinary

analyses use file I/O to interact with standalone

flow solvers. With this method, a guiding

framework or script is set up to mechanically

produce solver and optimizer input and output

files. Although while this method may be used

to pair codes practically anywhere, it does have

certain downsides.

The first problem is that there isn't enough disk
bandwidth, which increases the time it takes to

store, retrieve, and process the data. As file I/O

is often a shared resource on massively parallel

computing platforms, the throughput

experienced by a particular user might be

significantly reduced. If you have a powerful

network connecting your computing nodes,

you can exchange data at rates that are

exponentially higher than anything you could

ever hope to achieve with file I/O. Yet,

information transmission becomes much more

challenging when numerous disciplines or

optimizers make use of simultaneous solution

methodologies.

The possibility for inaccurate results is the

second downside of the file I/O method. When

data is reloaded, some information may be lost

in comparison to an original double precision

reference if the analysis output is written using

ASCII with a restricted number of digits or

using binary with single precision (to conserve

disk space and I/O time). In order to get rid of

this disparity, binary double precision numbers

must be used for all stored data, which results

in a lot of space being used up on the disk.

The third problem is that the same standalone

code is always being run. A new process must

be started whenever a code is called, and one-

off initialization operations are often carried

out at the outset. This part of the code is

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

usually not as speed-optimized as the rest of

the program. Moreover, in the course of

optimization and cross-disciplinary analysis,

iterative solutions are used.

tions have a lot in common with one another. If

you're using an iterative approach, you may

save time and money by carrying over this data

from solution to solution. While a restart

capability is not strictly necessary for this

process, it does increase the data that must be

written to and retrieved from the disk. As a

result of these two variables, it is far more

costly to do many subsequent analyses with a

standalone code than with the same code

executed as a library with an API.

If an application programming interface (API)
does not provide direct access to the necessary

functions, as is often the case with commercial

software, then the file I/O strategy is the only

remaining alternative. In order to prevent

problems with file I/O, it is essential that all

data transfer from the CFD code be performed

through direct memory access. The analysis

code is built as a library instead of a standalone

executable, and a process script controls the

order in which tasks are executed during

optimization or analysis. Each succeeding

analysis is set up to be executed directly by the

process script rather than through an input file.

This makes it possible for the aerodynamic

states, forces, and gradients, among other data,

to be transported across memory on their way

into and out of the CFD solver. As a result, the

cost each iteration drops dramatically, since

there is no longer any need to write data to

disk. When we are updating coupling variables

or switching iteration techniques, there is no

penalty to halting and beginning the iteration

process as we move variables via memory. For

a static aeroelastic solution using ADflow,

Kenway [6] analyzes the costs of the direct

memory access and file I/O techniques and

finds that the I/O approach is twice as

expensive.

2.10 Code efficiency

Multidisciplinary analysis and optimization
codes place a higher premium on code
efficiency. The repeated code runs used to
iteratively refine the design are mostly

responsible for this. It's already costly to run
analytic procedures, and this iterative process
just makes it more so. So, it is crucial to
enhance the computational efficiency of
analytical codes used in interdisciplinary
design optimization.
Specifically, we take into account these three
tiers of efficiency when we design our code.

Algorithmic efficiency is the first and most
crucial level, and it is reached by using cutting-
edge algorithms to converge the linear and
nonlinear systems of equations that emerge
throughout the optimization process. The next
step in efficiency is a direct-memory-access
API, which, as was previously indicated,

removes the effect of file I/O constraints on the
solver's speed. Code optimizations tailored to
the running algorithms and hardware are
necessary for maximum efficiency. Memory
bandwidth constraints may be reduced,
vectorization can be optimized, and the number
of cache misses can be reduced, among other
related enhancements.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

2.11 Additional requirements for

efficient multidisciplinary

design opti- mization

While having the capabilities listed in the
previous subsections is sufficient to
enable efficient multidisciplinary
analysis, given the high cost of
analyzing most multidisciplinary

systems, it is important to use efficient
optimization methods as well as efficient
solvers when conducting
multidisciplinary optimization.

As shown in the study by Yu et al.
[7], gradient-based optimization
algorithms are much more efficient at

finding optimal solutions for CFD-based
optimization problems than gradient-free
optimization algorithms. To this end, not
only is it important to have efficient
primal solution algorithms, but to also
have efficient computation of derivatives
for a multi- disciplinary flow solver. In
particular, efficient computation of

derivatives of a few functions of interest
with respect to a large number of design
variables is required. The adjoint method
is a useful approach for accomplishing
this [8–10]. Kenway et al. [11] describes
efficient ap- proaches for implementing
adjoint methods for CFD solvers and

benchmarks ADflow and OpenFOAM
adjoint implementations.

3 The CFD solver as a

library

Many of the requirements listed in the

previous section can be achieved by
viewing the CFD solver as a library.
This approach enables the required level
of access to the code using an API while

maintaining modularity in terms of code
development. Furthermore, a common
interface can be developed for multiple
CFD codes, enabling the interchangeable

use of these CFD solvers as modular
components in a broader computational
framework.

3.1 Code wrapping

To treat the solver as a library and
implement the API, it is necessary to
wrap its functionality to control it using a
scripting language. There are three
approaches for providing scripting
capability for a solver with increasing

levels of intrusiveness:

File I/O wrapping: This is the
simplest, least intrusive, and most
universal of the methods because
it can be done by treating the
solver as a “black box” without
having access to the source code.

Using this approach, a script
writes an input file, executes the
solver, and then parses the
resulting output. However, this
approach suffers from the
drawbacks described previously.
The DAFoam wrapper for
OpenFOAM developed by He et

al. [12] is an example of this
approach.

Function wrapping: This level of
wrapping exposes some but not
all of the underlying methods in
the solver. This is the approach
used to wrap ADflow. For

example, methods such as solve
or getSolution are made
available through the API, but
the lower-level functions used by
the solver are not. This method is
often employed when the code was
written originally as a stand-alone
solver and just a subset of high-

level methods required for the
API are exposed for the scripting
level interface.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

Import modules

from solverlib import FLOWSolver

from baseclasses import AeroProblem

Aerodynamic problem description

ap = AeroProblem(name=’flow’, mach=0.5 , alpha=1.0 , altitude=0.0 , areaRef=1.0 , chordRef=1.0)

options = {User Options}

CFDSolver = FLOWSolver(options=options)

CFDSolver(ap)

Create solver object

Solve problem

Only non−default options

Direct object wrapping: The most
intrusive wrapping approach

exposes all of the un- derlying
data and methods to the scripting
interface. The scripting code is
responsible for creating all the
required objects, down to the
lowest level. This approach is
most often used when developing
a wrapper for an object-oriented

code written in C++. An example
of a CFD code that uses this
approach is elsA [13, 14].

3.2 Example workflow using

Python

The vast majority of CFD programs rely
on either a graphical user interface
(GUI) or text user interface (TUI) to

control the execution of the solver. It is
often the case that a GUI is added on
top of an existing TUI, such as the
commercial packaging of the
OpenFOAM open- source solver [15,

16]. While GUIs help inexperienced
users quickly learn the software, they
are usually not flexible enough to
effectively implement the scenarios 3

through 5 described in Section 1. For
these more complex tasks, the ability to
quickly and easily script the
computational software is a necessity.

The most common way to script
TUI-based analysis methods is to use a
scripting language to automatically
generate an input file, launch the solver,

and then parse the resulting text- based
output for further analysis. This
procedure is tedious and error prone,
and output parsing tends to be fragile. A
better approach is to perform scripting
using the CFD solver directly.
Furthermore, with an easy to use yet

powerful scripting language such as
Python, simple scripts can completely
replace the TUI. The use of scripting to
control the solver facilitates the
transition to the more extensive
scripting required for complex tasks.

Figure 1: Example of control script for solving a flow problem.

Figure 1 shows a simple control script for solving a flow problem. This script includes

the main settings of a typical TUI

file for a CFD solver: flow conditions,
normalization values, and solver
parameters. The only additional
complexity comes from the module
imports and the creation of the two
required Python objects, AeroProblem
and CFDSolver. This type of run file is

functionally equivalent to a TUI file.
The power of this approach comes from
the flexibility of implementing both

simple and complex automation tasks.
Consider, for example, the creation

of a drag polar for an airfoil, which
requires a sweep over a range of angle of
attack variables. Figure 2 details the

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

Import modules

from solverlib import FLOWSolver

from baseclasses import AeroProblem

Aerodynamic problem description

ap = AeroProblem(name=’flow’, mach=0.5 , alpha=1.0 , altitude=0.0 , areaRef=1.0 , chordRef=1.0)

options = {User Options}
CFDSolver = FLOWSolver(options=options) # Create solver object

Only non−default options

f = open(’ polar. txt’,’w’)

for i in range(0 ,10 ,11):

ap. alpha = i

CFDSolver(ap)

Set new angle of attack

Solve problem

funcs = {}
CFDSolver. evalFunctions(ap, funcs) # Extract solution

f. close()

f. write(’%g %g %g %g\n’%(ap. alpha , funcs[’cl’], funcs[’cd’], funcs[’cl’]/ funcs[’cd’]))

The script writes the results to a simple
text file for further processing. In this

script, we also take the opportunity to
compute a derived value (the lift-to-drag
ratio), demonstrating the ability to
perform customized post-processing
online with the aerodynamic simulations.
This example highlights some of the

advantages of the pure scripting approach
over a scripting language that creates an
input file and parses the results: No
restart files are written or read, and

even though the solver is called
multiple times, the initialization needs
to be run only once.

Figure 2: Control script for creating a drag polar.

4 Python API

The key to using the flow solver with
a scripting language effectively is a
well-designed API. To that end, we

have developed a Python API that
meets all of the requirements for a
solver that is to be used in
multidisciplinary analysis and design
optimization. This API is extensible to
various types of flow solvers and has
been demonstrated on several different

types of codes, including a structured
multi-block and overset solver
(ADflow), an unstructured solver
(OpenFOAM) [15, 16], a 3D surface
panel code (Tripan) [17], and a 2D

airfoil solver (XFoil) [18]. The
following subsections describe the key
elements of this API.

4.1 API concept

The fundamental idea driving the
development of this API is the concept
that in a truly extensible
multidisciplinary framework, all of the

components must be modular. It is
unreal- istic to expect that all disciplines
in a multidisciplinary analysis to be
coded in a monolithic framework. This
would limit the ability of the code to be
extended to accommodate future

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

needs. Therefore, we define the
boundaries of a typical CFD analysis to

establish a general method for
modularizing CFD codes.

The key concept for enabling this is
to define the geometric surface of the
CFD problem as the point of interaction
for the flow solver. In most CFD
problems, this geometric surface defines
the boundary of the flow domain. This

is true regardless of the flow solver
fidelity level. Both analyses with a
volumetric analysis domain, such as
RANS and Euler CFD codes, and
analyses with a surface domain, such as
a panel code, can be handled using this
approach.

Furthermore, having the interface

defined at the surface allows for
straightforward use in both
multidisciplinary analysis and design
optimization applications. It is on this
surface that physical quantities are
integrated. For example, the transfers of
the heat fluxes in an aerothermodynamic

analyses or the displacements and
forces in an aerostructural analyses are
done through this surface.

A second important concept for the
API is the separation between the flow
conditions definition for a given
analysis and the geometric definition of
the problem. Several tasks, from

parameters sweeps to multipoint
optimization problems, require the
analysis of a single geometry at multiple
flow conditions. By separating the
definition of the from the solver itself, it
is possible to analyze any number of
these flow conditions without re-

initializing the flow solver and incurring
the associated startup penalty.

4.2 API layout

Using the concepts mentioned above, the

API needs to have the ability to:

• Manipulate the surface of the CFD

geometry

• Specify the flow conditions

• Solve for the flow state variables

• Evaluate the functions of interest

• Recover the solution from a failure
state

• Evaluate the solver derivatives

Here, we elaborate on each of these
requirements. In particular, we detail
the specific implementation we have

developed for the API and how each of
the specified requirements is met
through the API functionality. Figures
3 and 4 show simplified UML
diagrams for the solver and
aerodynamic problem classes that
embody the API outlined here. The
figures are simplified by leaving out

some of the detailed private attributes
and functions that are solver specific
and not part of the general API. The
basic API layout is composed of a
subset of methods in these figures that
provide the essential functionality.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

getOption
printCurrentOptions

 init
 call
printModifiedOptions
setOption

solverCreated
imOptions
name

category
defaultOptions
options

families
DVGeo
mesh

_updateGeomInfo

BaseSolver

AeroSolver

curAP
mesh
_updateGeomInfo
adflow

comm
coords0
DVGeo

ADFLOW

object

4.2.1 ADflow class layout

The ADflow API uses class inheritance,
as shown in Figure 3, where each class

inherits the properties and methods of
all of the classes to its left. The base
class is the Python object class, which
is part of the Python standard and is the
basic building block for all classes in
this language.

The BaseSolver class is used for
different types of solvers and defines

methods for option handling and class
naming, which are common to all the
solvers we implement. The Aero-
Solver class is the first layer of

specialization for aerodynamic solvers.
This class contains attributes to access
mesh and geometry objects, as well as
basic implementations of most of the

API calls outlined in this work. The
fourth and final class is the ADFLOW
class, which contains specific
implementations of the functionality
described in this work.

The purpose of each of these calls is
provided in the following sections.
Functions starting and ending with are

intrinsic Python functions that are part
of a standard Python class

definition.

getStates
setStates
checkSolutionFailure init
solveAdjoint
getResNorms
getResidual
setMesh
setDVGeo
resetFlow
getInitialSurfaceCoordinates
setSurfaceCoordinates getForces
getSurfaceCoordinates

 init
solveAdjoint
computeJacobianVectorProductFwd
computeJacobianVectorProductBwd
getSurfaceConnectivity setStates
setAdjoint
setMesh
solveAdjointForRHS
writeSolution
setAeroProblem
getResNorms
 call
setDisplacements
resetAdjoint
 del
resetFlow
setSurfaceCoordinates
evalFunctionsSens
evalFunctions
getSurfaceCoordinates
getResidual getAdjoint
getStates
getForces

Figure 3: Simplified UML diagram of ADflow and its base classes.

4.2.2 AeroProblem class layout

The AeroProblem class (shown in

Figure) 4 stores and updates all of the
information required to run an
aerodynamic solution at a given flow
condition. This includes functions to
treat these variables as design variables
and to generate a complete

thermodynamic state from various
combinations of input data.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

ICAOAtmosphere

englishUnits

hermite

call

init

getTP

AeroProblem

R

V

gamma

inputs

q

a

SSuthDim
dict

altitude

name

funcNames

mach

T

TSuthDim

P

rho

atm

Pr

reynoldsLength

nu

mu

re

reynolds

muSuthDim

DVs

bcVarData

 init

_setStates

_updateFromV

setDesignVars

addVariablesPyOpt

_updateFromRe

addDV

evalFunctionsSens

evalFunctions

_updateFromM

This class contains an instance of
the ICAOAtmosphere class in the atm

attribute. This class has a smoothed
implementation of the ICAO standard

atmosphere tables that computes fluid
temperature, pressure, and density for the
altitude corresponding to the flight
condition.

Figure 4: Simplified UML of the aerodynamic problem class.

4.2.3 Surface manipulation

There are three main functions required

for the manipulation of the boundary
surfaces of a CFD problem, whose
names are self explanatory:
getSurfaceCoordinates,
setSurfaceCoordinates, and
getSurfaceConnectivity. As previously mentioned, the philosophy of this API is that these boundary surfaces represent the interface between the CFD solver and other components or disciplines in a multidisciplinary analysis.

This approach allows the API to be
used for both 3D volume mesh codes,
such as those based on the RANS or
Euler equations, or lower-fidelity codes,
such as panel codes. However, this
means that any mesh manipulation
tasks, such as mesh warping, mesh

regeneration, or mesh adaptation for
volume meshes must be handled inside
the flow solver definition. This can be
accomplished in many different ways
and is solver specific. Therefore, we do

not attempt to prescribe an approach to
handling volume meshes in this API. In
ADflow, the volume mesh is handled by
plugging an additional Python module
into the flow solver at the Python layer,
as shown in Figure 7, allowing
different mesh manipulation tools to be
used

object

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

def getSurfaceCoordinates(self, groupName=None):

"""

Return the coordinates for the surfaces defined by groupName.

"""

return coords

as needed.
Figure 5 shows the

getSurfaceCoordinates function, which
returns the coordinates of CFD
boundary surfaces. The default
functionality is to return all solid wall
boundaries of the model, while the
groupName argument allows the user to
select specific subsets of the boundary

points to be returned.
Subset-selection is important for

some types of multidisciplinary analysis.
For example, in a static aeroelastic
(aerostructural) analysis with a wing-

body-tail CFD mesh that only has a
wing-box structure, the user would
probably not want the deflections of the
wing structure to affect the fuselage or

the tail. With this API, the user can
request just the coordinates of the wing
surface, so that this subset can be used to
create the association between the aero-
dynamic and structural meshes. The
surfaces are typically stored in a
distributed manner, with a portion of the
surface on each processor, eliminating

serial processing bottlenecks.

Figure 5: Function that returns the surface coordinates that define the boundary surface of the

flow problem.

The getSurfaceConnectivity

function returns a connectivity array
for the surface co- ordinates. This
connectivity describes the boundary
surface mesh of the CFD based on the
coordinates returned in the
getSurfaceCoordinates function. This

additional information is required to
facilitate the communication with other
disciplines, such as structural analysis
and mesh deformation.

The final surface manipulation
function is setSurfaceCoordinates,
which allows the coordinates, as
returned in getSurfaceCoordinates to

be updated at any time.

4.2.4 Set flow conditions

The function that sets the flow

conditions is internal to the solver class
and is not part of the API. The flow

condition information is contained in an
AeroProblem class. This class allows
the user to specify the required flow

conditions in a variety of ways. For
external flow calculations, the class
computes the full set of thermodynamic
variables required by the flow solver.
Additionally, specific boundary
conditions with specified flow
properties can be set for boundaries,
such as inflow or outflow conditions.

Any number of these problems can be
setup and passed to the solver for
sequential solutions.

4.2.5 Solve flow problem

The core solver function is in the call

method, whose signature is:

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

This function takes in an AeroProblem
object and updates any solver specific
settings for the information contained in
the AeroProblem. It also updates the

volume mesh based on the current
surface, configures the solver with the
current options, and handles the file
input and output.

This function can be configured to run
for a fixed number of iterations, a
fixed wall time, or until the solver
reaches a specific convergence tolerance.
This allows for fine-grained control over
the flow solution process, which is useful

for optimizations and multidisciplinary
analyses, as previously mentioned.

Figure 7: ADflow integration with other components and disciplines in a multidisciplinary

context.

the reference. This enables the solver to
determine the convergence stage even
when we use the previous converged
state as the initial guess.

For the initial stages of convergence,

we have two alternative algorithms:
multi-grid, and approximate Newton–
Krylov (ANK). The multi-grid
algorithms in ADflow can be used with
multi-block meshes, where obtaining
coarser levels of the mesh is
straightforward for meshes with the

correct number of nodes or cells. Using
this approach, ADflow can use a 5-
stage 4

th
 order accurate Runge–Kutta or

the D3ADI [31] schemes as smoothers

in the multi-grid startup process.
The ANK solver was developed to

add robustness to the pure NK
algorithm [21]. It uses a pseudo-
transient continuation (PTC) method

and an approximate Jacobian with the
backward Euler time-stepping scheme.
This solver does not require coarser levels
of the mesh and it is therefore applicable
to both multi-block and overset meshes.
The approximate nature of the linear
system used in the solver, along with

PTC, allows the algorithm to progress
the solution even when the state is far
away from the final solution. The
adaptive nature of our implementation

Aerodynamic problem 1

Aerodynamic problem 2

Aerodynamic problem 3

Geometry

object
ADflow

core solver
Mesh

object

Boundary condition

values

Surface

displacements

Surface quantities

(forces, heat fluxes, etc.)

Integrated quantities

(CL, CD, CM)

def c a l l (self, aeroProblem):

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

allows the solver to reduce the amount
of approximation in the linear
approximation as the solver converges.
This allows the solver to improve in

performance as the solution gets closer
to the converged state.

When tuning an ANK solver, there
is a trade-off between efficiency and
robustness. We have tuned the ANK
solver defaults to favor robustness. This
is because in an optimization context,
the optimizer is likely to try infeasible

intermediate designs, and also because
an interruption of the optimization
process is costly. The robustness of the
ANK solver enables ADflow to obtain
steady-state solutions even with these
intermediate cases, which helps the
optimization convergence by reducing

the number of failed flow solutions.
For the terminal stage of

convergence, ADflow switches to the
Newton–Krylov (NK) solver. This
solver uses Newton’s method to
converge the nonlinear system and a
Krylov

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

−

subspace solver to solve the resulting
linear systems. This approach can yield
convergence approaching quadratic, but
only if the initial guess is in the basin of
attraction of the solu- tion. Therefore,
we only use this method when the
relative convergence of the more robust
nonlinear solver is below 10

−3
 10

−5
.

Efficient solver restarting is
important within an optimization

context, where the flow solver is
repeatedly called to solve similar
problems between optimization
iterations. During successive CFD
simulations, we use the converged
solution from the previous optimization
iteration as the initial guess. If the
design changes are large, the nonlinear

residual norm increases, and the solver
defaults to one of the desired startup
strategies. This is done to prevent
failures that might occur with the NK
solver, when the initial guess is far from
the solution. However, if the design
changes are small (as it is likely to

happen during the final stages of an
optimization process), the previous flow
solution provides a good enough initial
guess for the NK solver to converge.
As a result, ADflow can rapidly obtain
solutions for new problems with
slightly perturbed designs.

When using gradient-based

optimization, the flow solver needs to
provide the derivatives of the functions of
interest (objective and constraint
functions) with respect to the design
variables. In aerodynamic design
optimization problems of interest, there
are usually far more design variables

than functions of interest. As a result, the
derivatives can be efficiently computed
using the adjoint method.

Kenway et al. [11] detail the adjoint
solver implementation in ADflow. The
overall ap- proach is to use automatic
differentiation to compute the terms

necessary to form the discrete adjoint
equations, resulting in accurate
derivatives. This approach to adjoint
development also reduces the overhead

to maintaining the adjoint code, since
the automatic differenti- ation tool can
be used to update the derivative code
whenever changes are made in the
analysis code. Furthermore, the cost of
the adjoint approach is independent of
the number of variables (but it scales with
the number functions of interest), which

makes it suitable for solving large-scale
aerodynamic shape optimization
problems.

For computational efficiency, ADflow
implements the three levels of
improvements men- tioned previously.
First of all, we use state-of-the-art

algorithms to converge the resulting
nonlinear and linear systems. The
ANK, NK, and adjoint solvers use
Jacobian-free methods to solve the
underlying linear solution algorithms.
This minimizes the code memory require-
ments, while the solution algorithms
themselves provide fast convergence for

the nonlinear and linear systems.
Secondly, we have direct memory access
between ADflow and other analysis code
we couple to it. This removes any file
I/O bottlenecks. The flow solver is
only initialized once and the allocated
memory is recycled only between design
iterations. Finally, ADflow uses a cache-

blocking technique to minimize cache
misses with the residual calculations.
Besides mitigating the memory access
bottleneck, this also enables us to take
full advantage of the vector instruction
sets in modern processor architectures.
All these enhancements contribute to the

performance of ADflow and help reduce
the cost of the optimization problems to
manageable levels.

In addition to these enhancements,
various implementation details in

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

ADflow help de- velopers to easily
extend the code for novel
applications. Because the API is
written in

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

Python, developers can use the
flexibility of this object-oriented

language to achieve the de- sired results
with minimal coding effort. On the
other hand, the high-performance
routines in ADflow are written in
Fortran 90. This enables the developers
to use a compiled coding language for
parts of the implementation that are
performance critical. Furthermore, this

Fortran layer is coded in a modular way,
so developers can easily implement new
turbulence models or modify the
governing equations without needing to
change the core code. Finally, we use
the portable, extensible toolkit for
scientific computation (PETSc) as the
underly- ing linear algebra package [32].

This provides us with state-of-the-art
implementations of modern linear
algebra algorithms, which we rely on
for the nonlinear and linear solvers in
ADflow. These factors lower the initial
coding investment when implementing
new features in ADflow and enable

users to extend the code for their
multidisciplinary applications.

5 Conclusion
When it comes to interdisciplinary analysis and

optimization, a flow solver's needs are distinct

from those of a standalone flow solver. We

present a list of needs for a powerful

multidisciplinary solver, discuss the concept of

using the flow solver as a library (rather than a

standalone piece of code), and present an

application programming interface (API) that

allows for the configuration of intricate

multidisciplinary analysis and optimization

problems through the use of concise scripts

written in a high-level language.

We offer the free and open-source CFD solver

ADflow as an example of a flow solver that

adheres to these standards. We use ADflow to

measure the effect of these constraints on the

speed with which aerodynamic optimization,

aerostructural analysis, and aerostructural

optimization may be performed

computationally.

We demonstrate that a direct memory access

API saves 12% to 25% of the optimization

time for aerodynamic optimization, and that it

may lower the cost of aerostructural

optimization by as much as a factor of three

when compared to a file I/O based method.

These findings prove without a reasonable

doubt how useful a direct memory access API

would be for scripts doing transdisciplinary

analyses.

Aerodynamic and aerostructural design

optimization issues have previously been

explored using ADflow. ADflow is included in

a more comprehensive set of open-source

software for optimizing aerodynamic shapes

(MACH-Aero). Some of these studies have

produced publicly available standards for

further study. Also, new flow solvers might be

developed using the ADflow API and utilized

interchangeably inside the MACH-Aero

framework.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

References

S. Venkatamaran and R. T. Haftka,
"Structural optimization
complexity: what has Moore's law
done for us?" Optimization in
Structural and Multidisciplinary

Contexts, Volume 28, Issue 3,
Pages 375-387, 2004.
doi:10.1007/s00158-004-0415-y.

According to "Parkinson's Law or the
Pursuit of Progress" [2] by C.
Parkinson. Reference: The
Economist (1959).

Perspective," in H. Thimbleby (ed. A

Computerized Version of
Parkinson's Law," Computers &
Control Engineering, Volume 4,
Issue 5, 1993, Pages 197–198.
doi:10.1049/cce:19930049.

Reference: [4]J. C. Vassberg, M. A.
DeHaan, M. S. Rivers, and R. A.
Wahls, "Retrospective on the
Common Research Model for
Computational Fluid Dynamics
Validation Studies," Journal of
Aviation, Vol. 55, No. 4, 2018, pp.
1325-1337.

doi:10.2514/1.C034906.

Scalable Parallel Approach for High-
Fidelity Steady-State Aeroelastic
Analysis and Derivative
Computations. Kenway, G. K. W.,
Kennedy, G. J., and Martins, J. R.
R. A. AIAA Journal, Volume 52,
Issue 5 (May 2014), Pages 935–

951.

Using a Scalable, Parallel Method to

Multi-Point, High-Fidelity
Aerostructural Optimization of
Aircraft Configurations. (2013).
Kenway, G. K. W., Ph.D. Thesis,

University of Toronto.

"On the Impact of Optimization
Algorithm and Beginning Design
on Wing Aerodynamic Shape
Optimization" by Yu, Y., Lyu, Z.,
Xu, Z., and Martins, J. R. R. A.,
published in Aerospace Science
and Technology, Volume 75, 2018,

pages 183-199,
doi:10.1016/j.ast.2018.01.016.

Journal of Scientific Computing, vol. 3,
no. 3, 1988, pp. 233-260, Jameson,
A., "Aerodynamic Design using
Control Theory,"
doi:10.1007/BF01061285.

An Introduction to the Adjoint Method
to Design, by M. B. Giles and N.
A. Pierce, Flow, Turbulence, and
Combustion, Volume 65, 2000,
Pages 393-415.
doi:10.1023/A:1011430410075.

[10] Martins, J. R. R. A., and Hwang, J.
T., "Review and Unification of

Techniques for Com- puting
Derivatives of Multidisciplinary
Computational Models," AIAA
Journal, Volume 51, No 11, 2013,
Pages 2582-2599.
doi:10.2514/1.J052184.

Progress in Aerospace Sciences,

Volume 110, Issue 100542, March
2019, pages G. K. W. Kenway, C.
A. Mader, P. He, and J. R. R. A.
Martins, "Effective Adjoint
Methods for Computational Fluid
Dynamics,"
DOI:10.1016/j.paerosci.2019.05.00
2.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

An Aerodynamic Design Optimization
Framework Utilizing a Discrete
Adjoint Method with OpenFOAM,
by He, P., Mader, C. A., Martins, J.

R. R. A., and Maki, K. J.,
Computers & Fluids, Vol. 168,
2018, pp. 285-303.
doi:10.1016/j.compfluid.2018.04.0
12.

[13] Gazaix, M., Joll`es, A., and
Lazareff, M., “The elsA object-
oriented computational tool for

industrial applications,”
Proceeding of the ICAS 2002
Congress, ICAS, 2002.

[14]

The ONERA elsA CFD software: input
from research and feedback from
industry," by L. Cambier, S. Heib,

and S. Plot; Mechanics and
Industry; Volume 14; Issue 3;
2013; doi:I10.1051/meca/2013056.

[15]

Weller, H. G., Tabor, G., Jasak, H., and
Fureby, C., “A tensorial approach
to computa- tional continuum
mechanics using object-oriented

techniques,” Computers in Physics,
Vol. 12, No. 6, 1998, pp. 620–631.
doi:10.1063/1.168744.

OpenFOAM is a C++ library for
complex physics simulations [16]
Jasak, H., A. Jemcov, and Z.

Tukovi'c, International Symposium
on Coupled Techniques in
Numerical Dynamics, IUC,
Citeseer, 2007.

[17] Kennedy, G. J., and Martins, J. R.
R. A., “A parallel aerostructural
optimization frame- work for

aircraft design studies,” Structural
and Multidisciplinary
Optimization, Vol. 50, No. 6, 2014,
pp. 1079–1101.

doi:10.1007/s00158-014-1108-9.

[18] Drela, M., “XFOIL: An Analysis
and Design System for Low
Reynolds Number Air- foils,” Low
Reynolds Number Aerodynamics,
edited by T. J. Mueller, Springer
Berlin Heidelberg, Berlin,
Heidelberg, 1989, pp. 1–12.

doi:10.1007/978-3-642-84010-4 1.

Reference: Gray, J. S., J. T. Hwang, J.
R. R. A. Martins, K. T. Moore, and
B. A. Naylor, "OpenMDAO: An
open-source framework for
multidisciplinary design, analysis,
and optimization," Structural and

Multidisciplinary Optimization,
Vol. 59, No. 4, 2019, pp. 1075-
1104. doi:10.1007/s00158-019-
02211-z.

[20] Hwang et al., "A computational
architecture for linking het-
erogeneous numerical models and
calculating coupled derivatives,"

ACM Transactions on
Mathematical Software, vol. 44,
no. 4, article 37, 2018.
doi:10.1145/3182393.

[21] A. Yildirim, G. K. W. Kenway, C.
A. Mader, and J. R. R. A. Martins,
"A Jacobian- free approximation

Newton-Krylov starting approach
for RANS simulations," Journal of
Computational Physics, vol. 397,
no. 10, 2019, p. 108741.
doi:10.1016/j.jcp.2019.06.018.

[22] Kenway, G. K., Kennedy, G. J.,
and Martins, J. R. R. A., “A CAD-
Free Method to High-Fidelity

Aerostructural Optimization,”

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501
 Vol.9, No 1, January – March 2019

Proceedings of the 13th
AIAA/ISSMO Multidisciplinary
Analysis Optimization Conference,
Fort Worth, TX, 2010.

doi:10.2514/6.2010-9231.

14th Fluid and Plasma Dynamics
Conference, 1981, p. 59, Jameson,
A., Schmidt, W., and Turkel, E.
"Numerical Solution of the Euler
Equations by Finite Volume
Techniques Utilizing Runge-Kutta
Time Stepping Schemes."

doi:10.2514/6.1981-1259.

[24] Turkel, E., and Vatsa, V. N.,
“Effects of Artificial Viscosity on
Three-Dimensional Flow
Solutions,” AIAA Journal, Vol. 32,
1994, pp. 39–45.
doi:10.2514/3.11948.

With reference to [25] van Leer, B.,
"Towards the ultimate conservative
difference scheme. Journal of
Computational Physics, Vol. 32,
1979, pp. 101-136,
doi:10.1016/0021-9991(79)90145-
1, Part V. A Second-Order Sequel
to Godunov's Method.

"Approximate Riemann Solvers,
Parameter Vectors, and Differ-
ence Schemes," by P. L. Roe, was
published in 1981 in Journal of
Computational Physics, Volume
43, pages 357–372.

[27]

A One-Equation Turbulence Model for
Aerodynamic Flows, by Pedro
Spalart and Salvador Allmaras,
was published in La Recherche
Aerospatiale, Volume 1, Issue 1,
1994, Pages 5–21.

Turbulence Modeling for
Computational Fluid Dynamics,
Third Edition, Wilcox, David C.,
DCW Industries, Inc., La Caada,

CA, 2006.

Reference: [29] Menter, F. R., "Two-
equation eddy-viscosity turbulence
models for engineering appli-
cations," AIAA Journal, Volume
32, Issue 8 (1994), Pages 1598-
1605. doi:10.2514/3.12149.

[30]

A NASA Turbulence Modeling
Library, by C. Rumsey,
https://turbmodels.larc.nasa.gov,
2019. Accessed: 2019-03-27.

